Реакция нейтрализации органическая химия. Классификация химических реакций в неорганической химии презентация урока для интерактивной доски по химии на тему

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции - процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:


27 13 Аl + 1 1 Н = 24 12 Мg + 4 2 Не


Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.


Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ.


В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:


С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O 2 (кислород) ↔ 2O 3 (озон)


В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:


1. Изомеризация алканов.


Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.


2. Изомеризация алкенов.


3. Изомеризация алкинов (реакция А. Е. Фаворского).


CH 3 - CH 2 - С= - СН ↔ СН 3 - С= - С- СН 3

этилацетилен диметнлацетилен


4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.



Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.


1. Реакции соединения - это такие реакции, при которых из двух и более веществ образуется одно сложное вещество


В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:


1. Получение оксида серы (IV):


S + O 2 = SO - из двух простых веществ образуется одно сложное.


2. Получение оксида серы (VI):


SO 2 + 0 2 → 2SO 3 - из простого и сложного веществ образуется одно сложное.


3. Получение серной кислоты:


SO 3 + Н 2 O = Н 2 SO 4 - из двух сложных веществ образуется одно сложное.


Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:


4NО 2 + O 2 + 2Н 2 O = 4НNO 3


В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:


1. Реакция гидрирования - присоединения водорода:


CH 2 =CH 2 + Н 2 → Н 3 -СН 3

этен → этан


2. Реакция гидратации - присоединения воды.


3. Реакция полимеризации.


2. Реакции разложения - это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.


В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:


1. Разложение оксида ртути(II) - из одного сложного вещества образуются два простых.


2. Разложение нитрата калия - из одного сложного вещества образуются одно простое и одно сложное.


3. Разложение перманганата калия - из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.


В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:


1. Реакция дегидратации (отщепления воды) этанола:


С 2 H 5 OH → CH 2 =CH 2 + H 2 O


2. Реакция дегидрирования (отщепление водорода) этана:


CH 3 -CH 3 → CH 2 =CH 2 + H 2


или СН 3 -СН 3 → 2С + ЗН 2


3. Реакция крекинга (расщепления) пропана:


CH 3 -СН 2 -СН 3 → СН 2 =СН 2 + СН 4


3. Реакции замещения - это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.


В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:


1. Взаимодействие щелочных или щелочноземельных металлов с водой:


2Na + 2Н 2 O = 2NаОН + Н 2


2. Взаимодействие металлов с кислотами в растворе:


Zn + 2НСl = ZnСl 2 + Н 2


3. Взаимодействие металлов с солями в растворе:


Fе + СuSO 4 = FеSO 4 + Сu


4. Металлотермия:


2Аl + Сr 2 O 3 → Аl 2 O 3 + 2Сr


Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, - способность его атомов водорода замещаться на атомы галогена. Другой пример - бромирование ароматического соединения (бензола, толуола, анилина).



С 6 Н 6 + Вr 2 → С 6 Н 5 Вr + НВr

бензол → бромбензол


Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.


В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.


4. Реакции обмена - это такие реакции, при которых два сложных вещества обмениваются своими составными частями


Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 O).


В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:


1. Реакция нейтрализации, идущая с образованием соли и воды.


2. Реакция между щелочью и солью, идущая с образованием газа.


3. Реакция между щелочью и солью, идущая с образованием осадка:


СuSO 4 + 2КОН = Сu(ОН) 2 + К 2 SO 4


или в ионном виде:


Сu 2+ + 2OН - = Сu(ОН) 2


В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:


1. Реакция, идущая с образованием слабого электролита - Н 2 O:


СН 3 СООН + NаОН → Nа(СН3СОО) + Н 2 O


2. Реакция, идущая с образованием газа:


2СН 3 СООН + СаСO 3 → 2СН 3 СОО + Са 2+ + СO 2 + Н 2 O


3. Реакция, идущая с образованием осадка:


2СН 3 СООН + К 2 SO 3 → 2К(СН 3 СОО) + Н 2 SO 3



2СН 3 СООН +SiO → 2СН 3 СОО + Н 2 SiO 3

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:


1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.


К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg 0 + H + 2 SO 4 = Mg +2 SO 4 + H 2



2. 2Mg 0 + O 0 2 = Mg +2 O -2



Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.


2KMn +7 O 4 + 16HCl - = 2KCl - + 2Mn +2 Cl - 2 + 5Cl 0 2 + 8H 2 O



В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.


1. Они восстанавливаются в соответствующие спирты:




Альдекиды окисляются в соответствующие кислоты:




2. Реакции, идущие без изменения степеней окисления химических элементов.


К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:


НСООН + CHgOH = НСООСН 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.


1. Экзотермические реакции протекают с выделением энергии.


К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.


Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена - пример экзотермической реакции. Она идет при комнатной температуре.


2. Эндотермические реакции протекают с поглощением энергии.


Очевидно, что к ним будут относиться почти все реакции разложения, например:


1. Обжиг известняка


2. Крекинг бутана


Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:


Н 2(г) + С 12(г) = 2НС 1(г) + 92,3 кДж


N 2(г) + O 2(г) = 2NO(г) - 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:


1. Гетерогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).


2. Гомогенные реакции - реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

V. По участию катализатора

По участию катализатора различают:


1. Некаталитические реакции, идущие без участия катализатора.


2. Каталитические реакции, идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы - ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

VI. По направлению

По направлению различают:


1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.


2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.


В органической химии признак обратимости отражают названия - антонимы процессов:


Гидрирование - дегидрирование,


Гидратация - дегидратация,


Полимеризация - деполимеризация.


Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма - обмена веществ.

VII. По механизму протекания различают:

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.


Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl 2 , СН 4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.


Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов - взаимодействия С 12 и СН 4 - . Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl 2 , в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д


Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика - наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:



По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

2. Ионные реакции идут между уже имеющимися или образующимися в ходе реакции ионами.

Типичные ионные реакции - это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.


По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

VIII. По виду энергии,

инициирующей реакцию, различают:


1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.


Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO 2 . Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.


К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, - фотосинтез, название которого говорит само за себя.


2. Радиационные реакции. Они инициируются излучениями большой энергии - рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами - Не 2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.


Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [ OН] и [ H ], с которыми и реагирует бензол с образованием фенола:


С 6 Н 6 + 2[ОН] → С 6 Н 5 ОН + Н 2 O


Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.


3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей


4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.


Рассмотренная выше классификация химических реакций отражена на схеме.


Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.


Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.


Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Классификация химических реакций

Химические реакции – химические процессы, в результате которых из одних веществ образуются другие отличающиеся от них по составу и (или) строению. При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами. Признаки химических реакций: Выделяется газ Выпадет осадок 3) Происходит изменение окраски веществ Выделяется или поглощается тепло, свет

Химические реакции в неорганической химии

Химические реакции в неорганической химии

Химические реакции в неорганической химии 1. По изменению степеней окисления химических элементов: Окислительно-восстановительные реакции: Окислительно-восстановительные реакции – это реакции, идущие с изменением степеней окисления элементов. Межмолекулярная - это реакция, идущая с изменением степени окисления атомов в разных молекулах. -2 +4 0 2H 2 S + H 2 SO 3 → 3S + 3H 2 O +2 -1 +2.5 -2 2Na 2 S 2 O 3 + H 2 O 2 → Na 2 S 4 O 6 + 2NaOH

Химические реакции в неорганической химии 1. По изменению степеней окисления химических элементов, образующих вещества: Окислительно-восстановительные реакции: 2. Внутримолекулярная - это реакция, идущая с изменением степени окисления разных атомов в одной молекуле. -3 +5 t 0 +3 (NH4) 2 Cr 2 O 7 → N 2 + Cr 2 O 3 +4H 2 O Диспропорционирования - это реакция, идущая с одновременным увеличением и уменьшением степени окисления атомов одного и того же элемента. +1 +5 -1 3NaClO → NaClO 3 + 2NaCl

2 .1. Реакции, идущие без изменения состава веществ В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например: С (графит) С (алмаз) 3О 2 (кислород) 2О 3 (озон) Sn (белое олово) Sn (серое олово) S (ромбическая) S (пластическая) P (красный) P (белый) Химические реакции в неорганической химии 2. По числу и составу реагирующих веществ:

Химические реакции в неорганической химии 2. По числу и составу реагирующих веществ: 2.2. Реакции, идущие с изменением состава вещества Реакции соединения – это реакции, при которых из двух и более веществ образуется одно сложное вещество. В неорганической химии все многообразие реакции соединения можно рассмотреть на примере реакции получения серной кислоты из серы: а) получение оксида серы(IV): S + O 2  SO 2 - из двух простых веществ образуется одно сложное, б) получение оксида серы(VI) : 2 SO 2 + O 2 2SO 3 - из простого и сложного веществ образуется одно сложное, в) получение серной кислоты: SO 3 + H 2 O = H 2 SO 4 - из двух сложных веществ образуется одно сложное.

Химические реакции в неорганической химии 2. По числу и составу реагирующих веществ: 2. Реакции разложения – это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ. В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами: а) разложение оксида ртути(II) : 2HgO  t 2Hg + O 2  - из одного сложного вещества образуются два простых. б) разложение нитрата калия: 2KNO 3  t 2KNO 2 + O 2  - из одного сложного вещества образуются одно простое и одно сложное. в) разложение перманганата калия: 2 KMnO 4 → t K 2 MnO 4 + MnO 2 +O 2 - из одного сложного вещества образуются два сложных и одно простое.

Химические реакции в неорганической химии 2. По числу и составу реагирующих веществ: 3. Реакции замещения – это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе. В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства металлов: а) взаимодействие щелочных или щелочноземельных металлов с водой: 2 Na + 2H 2 O = 2NaOH + H 2  Ca + 2H 2 O = Ca(OH) 2 + H 2  б) взаимодействие металлов с кислотами в растворе: Zn + 2HCl = ZnCl 2 + H 2  в) взаимодействие металлов с солями в растворе: Fe + Cu SO 4 = FeSO 4 + Cu г) металлотермия: 2Al + Cr 2 O 3  t Al 2 O 3 + 2Cr

4. Реакции обмена – это такие реакции, при которых два сложных вещества обмениваются своими составными частями Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н 2 О). В неорганической это может быть блок реакций, характеризующих свойства щелочей: а) реакция нейтрализации, идущая с образованием соли и воды: NaOH + HNO 3 = NaNO 3 + H 2 O или в ионном виде: ОН - + Н + = Н 2 О б) реакция между щелочью и солью, идущая с образованием газа: 2NH 4 Cl + Ca(OH) 2 = CaCl 2 + 2NH 3  + 2 H 2 O в) реакция между щелочью и солью, идущая с образованием осадка: Си SO 4 + 2KOH = Cu(OH) 2  + K 2 SO 4 Химические реакции в неорганической химии 2. По числу и составу реагирующих веществ:

Химические реакции в неорганической химии 3. По тепловому эффекту: 3.1. Экзотермические реакции: Экзотермические реакции – это реакции, протекающие с выделением энергии во внешнюю среду. К ним относятся почти все реакции соединения. Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения, например: 4Р + 5О 2 = 2Р 2 О 5 + Q 3.2. Эндотермические реакции: Эндотермические реакции – это реакции, протекающие с поглощением энергии во внешнюю среду. К ним относятся почти все реакции разложения, например: Обжиг известняка: СаСО 3  t CaO + CO 2  - Q

Химические реакции в неорганической химии 4. Обратимость процесса: 4.1. Необратимые реакции: Необратимые реакции протекают в данных условиях только в одном направлении. К таким реакциям можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения: S + O 2  SO 2 ; 4 P + 5O 2  2P 2 O 5 ; Си SO 4 + 2KOH  Cu(OH) 2  + K 2 SO 4 4.2. Обратимые реакции: Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство. Например: 2 SO 2 + O 2 2SO 3 N 2 +3H 2 2NH 3

Катализаторы – это вещества, участвующие в химической реакции и изменяющие ее скорость или направление, но по окончании реакции остающиеся неизменными качественно и количественно. 5.1. Некаталитические реакции: Некаталитические реакции – это реакции, идущие без участия катализатора: 2HgO  t 2Hg + O 2  2Al + 6HCl  t 2AlCl 3 + 3H 2  5.2.Каталитические реакции: Каталитические реакции – это реакции, идущие с участием катализатора: t,MnO 2 2KClO 3 → 2KCl + 3O 2  P,t CO + NaOH  H-CO-ONa Химические реакции в неорганической химии 5 . Участие катализатора

Химические реакции в неорганической химии 6 . Наличие поверхности раздела фаз 6.1. Гетерогенные реакции: Гетерогенные реакции – это реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах): FeO(т) + СО(г)  Fe(т) + СО 2 (г) + Q 2 Al(т) + 3С u С l 2 (р-р) = 3С u(т) + 2AlCl 3 (р-р) CaC 2 (т) + 2H 2 O (ж) = C 2 H 2  + Ca(OH) 2 (р-р) 6.2. Гомогенные реакции: Гомогенные реакции – это реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе): 2С 2 Н 6 (г) + 7О 2 (г)  4СО 2 (г) + 6Н 2 О(г) 2 SO 2 (г) + O 2 (г) = 2SO 3 (г) +Q H 2 (г) + F 2 (г) = 2HF(г)

Каждый учитель сталкивается с проблемой нехватки учебного времени. Точнее даже не сталкивается, а постоянно работает в условиях его хронического недостатка. Причем с годами последний неуклонно увеличивается вследствие уплотнения учебного материала, сокращения числа часов, отводимых на изучение химии, и усложнения задач обучения, призванного обеспечивать разностороннее развивающее воздействие на личность учащегося.

Для разрешения этого постоянно усиливающегося противоречия важно, с одной стороны, убедительно раскрыть перед учеником значимость образования, необходимость личностной заинтересованности в нем и перспективности самодвижения в его приобретении. С другой стороны – интенсифицировать осуществляемый в школе учебно – воспитательный процесс (УВП). Первого можно достигнуть в том случае, если обучение будет построено так, что ученик ЗАХОЧЕТ и СМОЖЕТ осознать себя СУБЪЕКТОМ УЧЕНИЯ, то есть таким участником УВП, который понимает и принимает его цели, владеет способами их достижения и стремится к расширению спектра этих способов. Таким образом, ведущими условиями превращения учащегося в субъект учения (в рамках предметного обучения химии) является его компетентность в содержании рассматриваемых учебных вопросов и способах овладения им и ориентация на достижение целостных знаний по предмету.

Скачать:


Предварительный просмотр:

Классификация химических реакций в неорганической и органической химии.

/в помощь молодому учителю/

Цель: систематизировать знания учащихся о подходах к классификации химических реакций. Образовательные задачи: · повторить и обобщить сведения о классификации химических реакций по признаку – числу исходных и полученных веществ; рассмотреть законы сохранения массы веществ и энергии при химических реакциях как частный случай проявления всеобщего закона природы.

Воспитательные задачи: · доказать ведущую роль теории в познании практики; · показать учащимся взаимосвязь противоположных процессов; · доказать материальность изучаемых процессов;

Развивающие задачи: · развитие логического мышления путем сравнения, обобщения, анализа, систематизации.

Тип урока: урок комплексного применения знаний.

Методы и приемы: беседа, письменная работа, фронтальный опрос.

Ход урока I. Организационный момент

II. Мотивация учебной деятельности учащихся, сообщение темы, цели, задач урока.

III. Проверка знаний учащимися фактического материала.

Фронтальная беседа: 1. Какие типы химических реакций вам известны? (реакции разложения, соединения, замещения и обмена). 2. Дайте определение реакции разложения? (Реакции разложения – реакции, при которых из одного сложного вещества образуются два и более новых простых или менее сложных веществ). 3. Дайте определение реакции соединения? (Реакции соединения – реакции, при которых два или несколько веществ образуют одно более сложное вещество). 4. Дайте определение реакции замещения? (Реакции замещения – реакции, при которых атомы простого вещества замещают атомы одного из элементов в сложном веществе). 5 Дайте определение реакции обмена? (Реакции обмена – реакции, при которых два сложных вещества обмениваются своими составными частями). 6. Какова основа этой классификации? (основой классификации является число исходных и образовавшихся веществ)

IV. Проверка знаний учащимися основных понятий, законов, теорий, умений объяснять их сущность.

  1. Объясните сущность протекания химических реакций. (Сущность химических реакций сводится к разрыву связей в исходных веществах и возникновению новых химических связей в продуктах реакции. При этом общее число атомов каждого элемента остается постоянным, следовательно, масса веществ в результате химических реакций не изменяется.)
  2. Кем и когда была установлена эта закономерность? (В 1748 году русским ученым М.В.Ломоносовым – закон сохранения массы веществ).

V. Проверка глубины осмысления знаний, степени обобщения.

Задание: определите тип химической реакции (соединения, разложения, замещения, обмена). Дайте объяснения сделанным вами заключения. Расставьте коэффициенты. (ИКТ)

1 ВАРИАНТ

2 ВАРИАНТ

3 ВАРИАНТ

Mg + O 2 =MgO

Fe + CuCl 2 =

Cu + FeCl 2

Cu + O 2 = CuO

K + H 2 O =

KOH + H 2

P + O 2 = P 2 O 5

Fe 2 O 3 + HCl = FeCl 3 + H 2 O

Fe + H 2 SO 4 = FeSO 4 +H 2

Mg + HCl =

MgCl 2 + H 2

Ba + H 2 O = Ba(OH) 2 + H 2

Zn + Cu(NO 3 ) 2 =Cu+Zn(NO 3 ) 2

Al 2 O 3 + HCl =

AlCl 3 +H 2 O

SO 2 + H2O ↔ H 2 SO 3

CaO + H 2 O = Ca(OH) 2

P 2 O 5 + H 2 O = H 3 PO 4

CuCl 2 + KOH= Cu(OH) 2 +KCl

CaO + H 3 PO 4 = Ca 3 (PO 4 ) 2 + H 2 O

Ba(OH) 2 + HNO 3 = Ba(NO 3 ) 2 + H 2 O

Ca(OH) 2 + HNO 3 = Ca(NO 3 ) 2 + H 2 O

NaOH + H 2 S =

Na 2 S + H 2 O

Ca + H 2 O =

Ca(OH) 2 +H 2

AgNO 3 + NaBr = AgBr↓ + NaNO 3

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓+ NaCl

AgNO 3 + KCl = AgCl +KNO 3

Cu + Hg(NO 3 ) 2 = Cu(NO 3 ) 2 + Hg

CO 2 + H2O ↔ H 2 CO 3

Fe(OH) 3 =

Fe 2 O 3 + H 2 O

Mg + HCl =

MgCl 2 + H 2

VI Классификация химических реакций в органической химии.

А: В неорганической химии реакции соединения, а в органической химии такие реакции часто называют реакциями присоединения (Реакции, в результате которых две и более молекул реагирующих веществ соединяются в одну) В них обычно участвуют соединения, содержащие двойную или тройную связь. Разновидности реакций присоединения: гидрирование, гидратация, гидрогалогенирование, галогенирование, полимеризация. Примеры данных реакций:

1.Гидрирование – реакция присоединения молекулы водорода по кратной связи:

Н 2 С = СН 2 + Н 2 → CН 3 – СН 3

этилен этан

НС ≡ СН + Н 2 → CН 2 = СН 2

ацетилен этилен

2.Гидрогалогенирование – реакция присоединения галогеноводорода по кратной связи

Н 2 С = СН 2 + НCl→ CН 3 ─CH 2 Cl

этилен хлорэтан

(по правилу В.В.Марковникова)

Н 2 С = СН─СН 3 + НCl→ CН 3 ─CHCl─СН 3

пропилен 2 - хлорпропан

HC≡CH + HCl → H 2 C=CHCl

ацетилен хлорвинил

HC≡C─СН 3 + HCl → H 2 C=CCl─СН 3

пропин 2-хлорпропен

3.Гидратация – реакция присоединения воды по кратной связи

Н 2 С = СН 2 + Н 2 О→ CН 3 ─CH 2 ОН (первичный спирт)

этен этанол

(при гидратации пропена и других алкенов образуются вторичные спирты)

HC≡CH + H 2 О → H 3 C─CНО

ацетилен альдегид – этаналь (реакция Кучерова)

4.Галогенирование – реакция присоединения молекулы галогена по кратной связи

Н 2 С = СН─СН 3 + Cl 2 → CН 2 Cl─CHCl─СН3

пропилен 1,2 – дихлорпропан

HC≡C─СН 3 + Cl 2 → HCCl=CCl─СН 3

пропин 1,2-дихлорпропен

5.Полимеризация – реакции, в ходе которых молекулы веществ с небольшой молекулярной массой соединяются друг с другом с образованием молекул веществ с высокой молекулярной массой.

n СН 2 =СН 2 → (-СН 2 -СН 2 -)n

Этилен полиэтилен

Б: В органической химии к реакциям разложения (отщепления) относятся: дегидратация, дегидрирование, крекинг, дегидрогалогенирование.

Соответствующие уравнения реакций:

1.Дегидратация (отщепление воды)

С 2 Н 5 ОН → C 2 H 4 + Н 2 O (H 2 SO 4 )

2.Дегидрирование (отщепление водорода)

С 6 Н 14 → С 6 Н 6 + 4Н 2

гексан бензол

3.Крекинг

C 8 H 18 → C 4 H 10 + C 4 H 8

октан бутан бутен

4. Дегидрогалогенирование (отщепление галогеноводорода)

C 2 H 5 Br → C 2 H 4 + НВг (NaOH,спирт)

Бромэтан этилен

В: В органической химии реакции замещения понимаются шире, то есть замещать может не один атом, а группа атомов или замещается не атом, а группа атомов. К разновидности реакции замещения можно отнести нитрование и галогенирование предельных углеводородов, ароматических соединений, спиртов и фенола:

С 2 Н 6 + Cl 2 → C 2 H 5 Cl +HCl

этан хлорэтан

С 2 Н 6 + HNO 3 → C 2 H 5 NO 2 +H 2 O (реакция Коновалова)

этан нитроэтан

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr

бензол бромбензол

С 6 Н 6 + HNO 3 → C 6 H 5 NO 2 +H 2 O

бензол нитробензол

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

Этанол хлорэтан

C 6 H 5 ОН + 3Br 2 → C 6 H 2 Br 3 + 3HBr

фенол 2,4,6 - трибромфенол

Г: Реакции обмена в органической химии характерны для спиртов и карбоновых кислот

НСООН + NaOH → HCOONa + Н 2 O

муравьиная кислота формиат натрия

(реакция нейтрализации)

CH 3 COOH + C 2 H 5 OH↔ CH 3 COOC 2 H 5 + H 2 O

уксусная этанол этиловый эфир уксусной кислоты

(реакция этерификации ↔ гидролиз)

VII Закрепление ЗУН

  1. При нагревании гидроксида железа (3) происходит реакция
  2. Взаимодействие алюминия с серной кислотой относится к реакции
  3. Взаимодействие уксусной кислоты с магнием относится к реакции
  4. Определите тип химических реакций в цепочке превращений:

(использование ИКТ)

А) Si→SiO 2 →Na 2 SiO 3 →H 2 SiO 3 →SiO 2 →Si

Б) СН 4 →С 2 Н 2 →С 2 Н 4 →С 2 Н 5 ОН→С 2 Н

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Урок 114

Тема учебного занятия : Классификация химических реакций в органической и неорганической химии.

Продолжительность: 45 мин

Цель урока: Повторить и обобщить представление о химической реакции, как о процессе превращения, рассмотреть некоторые из многочисленных классификаций химических реакций по различным признакам.

Задачи урока:

1) Образовательная – систематизировать, обобщить и углубить знания учащихся о химических реакциях и их классификации, развить навыки самостоятельной работы, умения записывать уравнения реакций и расставлять коэффициенты, указывать типы реакций, делать выводы и обобщения.

2) Развивающая – развивать речевые навыки, способности к анализу; развитие познавательных способностей, мышления, внимания, умения использовать изученный материал для познания нового. 3) Воспитательная – воспитание самостоятельности, сотрудничества, нравственных качеств – коллективизма, способности к взаимовыручке.

Средства обучения: Учебник О.С. Габриелян. Химия – 10, 11. М.: Дрофа 2008г.; таблицы растворимости, Периодической системы химических элементов Д.И. Менделеева, компьютер,

Методы: - Организация УПД: беседа, объяснение

Контроль: фронтальный опрос, минисамостоятельные работы на закрепление.

Тип урока: Повторение, закрепление и систематизация знаний полученных ранее.

Форма урока:

Этапы урока: 1. Организационная часть: Цель – подготовить обучащихся к началу работы на уроке. 2. Подготовка к восприятию ранее изученной темы. Цель – актуализация ранее полученных знаний через восстановление опорных знаний – целепологание. 3. Повторение и закрепление ранее изученного материала. Цель – повторение, закрепление и систематизация знаний ранее полученных. 4. Подведение итогов, оценка деятельности обучащихся, домашнее задание. Цель – анализ, самоанализ, применение теоретических знаний обучащихся на практике.

План работы:

    Организационный момент……………………………………………………….2 мин

    Мотивация………………………………………………………………………...3 мин

    Изучение материалов……………………………………………………………30 мин

    Закрепление …………………………………………………………………..…..5 мин

    Выводы ……………………………………………………………………….…...3 мин

    Домашнее задание ………………………………………………………….….…2 мин

Ход учебного занятия

Приветствие, учет посещаемости

Организация внимания студентов

Подготовка к уроку

    Мотивация

Обучащимся задаются вопросы.

1)Что такое химическая реакция? (термин «реакция» с латыни означает «противодействие», «отпор», «ответное действие»). 2)Признаки химических реакций? а) Изменение окраски. б) Появление запаха. в) Образования осадка. г) Выделение газа. д) Выделение или поглощение тепла. е) Выделение света. 3)А каковы же условия возникновения и течения химических реакций?

а) Нагревание. б) Измельчение и перемешивание. в) Растворение. г) Добавление катализатора. д) Давление. Преподаватель благодарит обучащихся за ответы.

Формирования интереса к материалу занятия студентов

Запись темы урока в тетрадь

    Изучение нового материала

Без химических реакций невозможна жизнь. В окружающем нас мире протекает огромное число реакций. Чтобы ориентироваться в огромном царстве химических реакций необходимо знать их типы. В любой науке применяется приём классификаций, позволяющих по общим признакам разделить всё множество объектов на группы. И сегодня на уроке мы поговорим о типах химических реакций и по каким при знакам их классифицируют. ПРИЛОЖЕНИЕ 1

1 признак химической реакции: «Число и состав исходных и полученных веществ». Определить какое вещество пропущено, уровнять химическую реакцию, определить тип химической реакции? а) 2 КОН + Н2 SO 4 = K 2 SO 4 + 2 H 2 O обмен б) С2Н2 + Н2О = СН3СОН соединение в) 2 Na + 2 HCI = 2 NaCI + H 2 замещение г) СН4 = С + 2 Н2 разложение 2 признак химической реакции: «Изменение степени окисления». Уровнять предложенную реакцию с помощью электронного баланса и указать окислитель и восстановитель . Н2 S + 8 HNO 3 = H 2 SO 4 + 8 NO 2 + 4 H 2 O ОВР S – восстановитель; N – окислитель. Н2О + СО2 = Н2СО3 не ОВР 3 признак химической реакции: «Тепловой эффект». Определить, какая из предложенных реакций является экзотермической? 1) СН4 + 2 О2 = СО2 + 2 Н2О + Q экзотермическая 2) 2 HgO = 2 Hg + O 2 - Q эндотермическая 4 признак химической реакции: «Агрегатное состояние веществ». Определить тип химической реакции по агрегатному состоянию веществ. 1) 3 C 2 H 2 = C 6 H 6 гетерогенная 2) Zn + S = ZnS гомогенная 5 признак химической реакции: «Введение других веществ». Определить среди предложенных реакций каталитическую? а) N 2 + 3 H 2 = 2 NH 3 каталитическая б) СН4 + 2 О2 = СО2 + 2 Н2О некаталитическая 6 признак химической реакции: «Обратимость». Определить среди предложенных: какая обратимая, т.е. идущая в двух направлениях, а какая необратимая, идущая до конца. а) С2Н2 + Н2 = С2Н4 обратимая б) 2 Na + 2 H 2 O = 2 NaOH + H 2 необратимая

Обучащиеся работают с реакциями по 6 признакам и вносят результаты в таблицу, заранее выданную для каждого (приложение 2 ).

4. Применение химических реакций в строительстве (сообщения обучающихся)

Объяснение преподавателя. Демонстрация слайдов

Прослушивание объяснения преподавателя, просмотр слайдов. Запись в тетрадь определения.

    Закрепление

Обучащиеся на чистых листочках выполняют дифференцированное задание (приложение 3).

Организация работы студентов. Контроль

Выполнение задания в тетради.

    Выводы и итоги урока

Обучащимся задаются вопросы: 1 ) О каком явлении мы сегодня вели речь? 2) С какими понятиями мы сегодня работали? 3) Какие умения на уроке применяли? 4)Достигли ли мы задач, поставленных в начале урока?

Оценка деятельности студентов на уроке

Самооценка оценки деятельности на уроке

    Домашнее задание

У В. Маяковского есть такая философская мысль: Если звёзды зажигаются в небе, значит, это кому-нибудь нужно. Если химики изучают классификацию химических реакций, то, следовательно, это кому – то нужно. И здесь у меня возникает желание предложить вам небольшой реферат , в котором на примерах нужно показать значение всех типов реакций в реальной жизни, в её богатстве и разнообразии

(творческое домашнее задание).

ПРИЛОЖЕНИЕ 1

Химические реакции, или химические явления, – это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

При химических реакциях обязательно происходит изменение веществ, при котором рвутся старые и образуются новые связи между атомами.

Рассмотрим классификацию химических реакций по различным признакам.

I. По числу и составу реагирующих веществ

Реакции, идущие без изменения состава веществ

В неорганической химии к таким реакциям можно отнести процессы получения одного химического элемента, например:

C (графит) C (алмаз)
P (белый)
P (красный)
3O2 (кислород)
2O3 (озон)

В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:

Изомеризация .

Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.

Реакции, идущие с изменением состава вещества

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.

Реакции соединения – это такие реакции, при которых из двух и более веществ образуется одно сложное вещество. В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:

Получение оксида серы (IV):

S + O2 = SO2 – из двух простых веществ образуется одно сложное.

Получение оксида серы (VI):

2SO2 + O2

2SO3

из простого и сложного веществ образуется одно сложное.

Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:

4NO2 + О2 + 2Н2O = 4HNO3

В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:

Реакция гидрирования – присоединения водорода:

Реакции разложения – это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.

В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:

Разложение оксида ртути (II):

2HgO

2Hg + O2

из одного сложного вещества образуются два простых.

В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:

Реакция дегидратации (отщепления воды) этанола:

Реакция дегидрирования (отщепление водорода) этана:

Реакции замещения – это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе. B неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:

Взаимодействие щелочных или щелочноземельных металлов с водой:
2Na + 2H2O = 2NaOH + H2

Взаимодействие металлов с кислотами в растворе:

Zn + 2HCl = ZnCl2 + H2

Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, – способность его атомов водорода замещаться на атомы галогена:

CH3Cl

HCl

хлорметан

В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола:

+ HNO3

C6H5NO2

H2O

бензол

нитробензол

Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма.

Реакции обмена – это такие реакции, при которых два сложных вещества обмениваются своими составными частями.

Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н2О).

B неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:

Реакция нейтрализации, идущая с образованием соли и воды:

NaOH + HNO3 = NaNO3 + Н2O

или в ионном виде:

OH– + H+ = H2O

Реакция между щелочью и солью, идущая с образованием газа:

2NH4Cl + Са(ОН)2 = CaCl2 + 2NH3 + 2Н2O

B органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты: Реакция, идущая с образованием слабого электролита – H2O:

Na(CH3COO) + H2O

Реакция, идущая с образованием газа:

2CH3COOH + CaCO3 → 2CH3COO– + Ca2+ + CO2 + H2O

Реакция, идущая с образованием осадка:

2CH3COOH + K2SiO3 → 2K(CH3COO) + H2SiO3↓

II. По изменению степеней окисления химических элементов, образующих вещества

По этому признаку различают следующие реакции:

Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции. К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

Реакции, идущие без изменения степеней окисления химических элементов. К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, например:

Li 2 O + Н 2 O = 2LiOH ,

многие реакции разложения:

Fe 2 O 3 + 3H 2 O

реакции этерификации:

HCOOH + CH 3 OH

HCOOCH 3 + H 2 O

III. По тепловому эффекту

По тепловому эффекту реакции делят на экзотермические и эндотермические.

1.Экзотермические реакции протекают с выделением энергии.

К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота (II) из азота и кислорода и реакция газообразного водорода с твердым иодом:

N 2 + O 2 = 2 NO Q

Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения , например:

4P + 5O 2 = 2P 2 O 5 + Q

Гидрирование этилена – пример экзотермической реакции:

CH 3 –CH 3

+ Q

Она идет при комнатной температуре.

2.Эндотермические реакции протекают с поглощением энергии.

Очевидно, что к ним будут относиться почти все реакции разложения, например:

    1. Обжиг известняка:

CaO + CO 2

Q

Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции , а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением , например:

H 2 (г) + Cl 2 (г) = 2HCl(г) + 92,3 кДж

N 2 (г) + O 2 (г) = 2NO(г) 90,4 кДж

IV. По агрегатному состоянию реагирующих веществ (фазовому составу)

По агрегатному состоянию реагирующих веществ различают:

    Гетерогенные реакции – реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах):

2Al(т) + 3CuCl 2 (р-p) = 3Cu(т) + 2AlCl3(р-p)

CaC 2 (т) + 2H 2 O(ж) = C 2 H 2 + Ca(OH) 2 (р-p)

Гомогенные реакции – реакции, в которых реагирующие вещества и

    продукты реакции находятся в одном агрегатном состоянии (в одной фазе):

H 2 (г) + F 2 (г) = 2HF(г)

V. По участию катализатора

По участию катализатора различают:

    Некаталитические реакции , идущие без участия катализатора:

2Hg + O 2

2. Каталитические реакции , идущие с участием катализатора:

C 2 H 5 OH

CH 2 =CH 2

+ H 2 O

Этанол этен

Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы – , все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70 % химических производств используют катализаторы.

VI. По направлению

По направлению различают:

    Необратимые реакции протекают в данных условиях только в одном направлении.

К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.

Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях.

Таких реакций подавляющее большинство.

В органической химии признак обратимости отражают названия – антонимы процессов:

    гидрирование – дегидрирование,

    гидратация – дегидратация,

Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза

Рисунок 1. Классификация химических реакций

Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака:

Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.

Приложение 2

Классификация реакций

Тип реакции

Пример

    не сопровождаются изменением состава

Аллотропные модификации

C (графит) C (алмаз)

    с изменением состава веществ

    с выделением или поглощением тепла

    С изменением степени окисления

    По направлению

    По изменению фазового состава

    По использованию катализатора

Приложение 3

    Запишите термохимическое уравнение реакции горения метана, если известно, что при сгорании 5,6 л этого газа (н. у.) выделяется 225 кДж теплоты.

    При соединении 18 г алюминия в кислороде выделяется 547 кДж теплоты. Составьте термохимическое уравнение этой реакции.





error: Контент защищен !!