Вращательное движение твердого тела вокруг неподвижной оси. Вращательное движение твердого тела: уравнение, формулы Вращательное движение абсолютно

Кинематика твердого тела

В отличие от кинематики точки в кинематике твердых тел решаются две основные задачи:

Задание движения и определение кинематических характеристик тела в целом;

Определение кинематических характеристик точек тела.

Способы задания и определения кинематических характеристик зависят от типов движения тел.

В настоящем пособии рассматриваются три типа движения: поступательное, вращательное вокруг неподвижной оси и плоско-параллельное движение твердого тела

Поступательное движение твердого тела

Поступательным называют движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению (рис.2.8).

Доказана теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения (рис.2.8).

Вывод: Поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.

Рис. 2.8 Рис. 2.9

Вращательное движение твердого тела вокруг неподвижной оси.

Вращательным вокруг неподвижной оси называют движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.

Положение тела определяется углом поворота (рис.2.9). Единица измерения угла - радиан. (Радиан - центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит 2 радиана.)

Закон вращательного движения тела вокруг неподвижной оси = (t). Угловую скорость и угловое ускорение тела определим методом дифференцирования

Угловая скорость, рад/с; (2.10)

Угловое ускорение, рад/с 2 (2.11)

При вращательном движении тела вокруг неподвижной оси его точки, не лежащие на оси вращения, движутся по окружностям с центром на оси вращения.

Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точка М, то точка М будет описывать вокруг точки С окружность радиуса R (рис. 2.9). За время dt происходит элементарный поворот на угол, при этом точка М совершит перемещение вдоль траектории на расстояние.Определим модуль линейной скорости:

Ускорение точки М при известной траектории определяется по его составляющим, см.(2.8)

Подставляя в формулы выражение (2.12) получим:

где: - тангенциальное ускорение,

Нормальное ускорение.

Плоско - параллельное движение твердого тела

Плоскопараллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра.

В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.

Рис. 2.10 Рис. 2.11

Уравнения движения запишутся в виде:

Х А = Х А (t)

Y А = Y А (t) (2.14)

А = А (t)

Кинематические характеристики полюса определяют из уравнений его движения.

Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А ) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А ).

Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения

Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.

Рис.2.12

Положение мгновенного центра вращения может быть определено на основании следующих свойств:

Вектор скорости точки перпендикулярен радиусу;

Модуль скорости точки пропорционален расстоянию от точки до центра вращения (V= R ) ;

Скорость в центре вращения равна нулю.

Рассмотрим некоторые случаи определения положения мгновенного центра.

1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей.

2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ . Для его нахождения проведем линию пропорциональности скоростей на основании зависимости V= R .

3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения.

Рис. 2.13 Рис. 2.14 Рис. 2.15

Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела.

Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены .

Доказательство: расстояние АВ изменяться не может, следовательно,

V А cos не может быть больше или меньше V В cos (рис.2.16).

Рис. 2.16

Вывод: V А cos =V В cos. (2.19)

Сложное движение точки

В предыдущих параграфах рассматривалось движение точки относительно неподвижной системы отсчета, так называемое абсолютное движение. В практике встречаются задачи, в которых известно движение точки относительно системы координат, которая движется относительно неподвижной системы. При этом требуется определить кинематические характеристики точки относительно неподвижной системы.

Принято называть: движение точки относительно подвижной системы - относительным , движение точки вместе с подвижной системой - переносным , движение точки относительно неподвижной системы - абсолютным . Соответственно называют скорости и ускорения:

Относительные;- переносные; -абсолютные.

Согласно теореме о сложении скоростей абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (рис.).

Абсолютное значение скорости определяется по теореме косинусов

Рис.2.17

Ускорение по правилу параллелограмма определяется только при поступательном переносном движении

При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.

Кориолисово ускорение численно равно

где - угол между векторами и

Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

Вопросы для самоконтроля по разделу

1. В чем состоят основные задачи кинематики? Назовите кинематические характеристики.

2. Назовите способы задания движения точки и определение кинематических характеристик.

3. Дайте определение поступательного, вращательного вокруг неподвижной оси, плоскопараллельного движения тела.

4. Как задается движение твердого тела при поступательном, вращательном вокруг неподвижной оси и плоскопараллельном движении тела и как определяется скорость и ускорение точки при этих движениях тела?

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Вращательным называют такое движение, при котором две точки, связанные с телом, следовательно, и прямая, проходящая через эти точки, остаются неподвижными во время движения (рис. 2.16). Неподвижную прямую А В называют осью вращения.

Рис. 2.1В. К определению вращательного движения тела

Положение тела при вращательном движении определяет угол поворота ф, рад (см. рис. 2.16). При движении угол поворота меняется со временем, т.е. закон вращательного движения тела определяется как закон изменения во времени величины двугранного угла Ф = ф(/) между неподвижной полуплоскостью К () , проходящей через ось вращения, и подвижной п 1 полуплоскостью, связанной с телом и также проходящей через ось вращения.

Траектории всех точек тела при вращательном движении представляют собой концентрические окружности, расположенные в параллельных плоскостях с центрами на оси вращения.

Кинематические характеристики вращательного движения тела. Аналогично тому, как были введены кинематические характеристики для точки вводят кинематическое понятие, характеризующее быстроту изменения функции ф(с), которая определяет положение тела при вращательном движении, т.е. угловую скорость со = ф = с/ф/с//, размерность угловой скорости [со] = рад/с.

В технических расчетах часто используют выражение угловой скорости другой размерностью - через число оборотов в минуту: [я] = об/мин, а связь между п и со можно представить в виде: со = 27ш/60 = 7ш/30.

В общем случае угловая скорость изменяется во времени. Мерой быстроты изменения угловой скорости является угловое ускорение е = с/со/с//= со = ф, размерность углового ускорения [е] = рад/с 2 .

Введенные угловые кинематические характеристики полностью определяются заданием одной функции - угла поворота от времени.

Кинематические характеристики точек тела при вращательном движении. Рассмотрим точку М тела, находящуюся на расстоянии р от оси вращения. Эта точка движется по окружности радиуса р (рис. 2.17).


Рис. 2.17.

точек тела при его вращении

Длина дуги M Q M окружности радиуса р определяется как s = ptp, где ф - угол поворота, рад. В случае, если закон движения тела задан как ф = ф(г), то закон движения точки М по траектории определяет формула S = рф(7).

Пользуясь выражениями кинематических характеристик при естественном способе задания движения точки, получим кинематические характеристики для точек, вращающегося тела: скорость по формуле (2.6)

V = 5 = рф = рсо; (2.22)

касательное ускорение согласно выражению (2.12)

я т = К = сор = ер; (2.23)

нормальное ускорение по формуле (2.13)

а„ = И 2 /р = со 2 р 2 /р = огр; (2.24)

полное ускорение с использованием выражения (2.15)

а = -]а + а] = рх/е 2 + со 4 . (2.25)

За характеристику направления полного ускорения принимают р - угол отклонения вектора полного ускорения от радиуса окружности, описываемой точкой (рис. 2.18).

Из рис. 2.18 получаем

tgjLi = aja n =ре/рсо 2 =г/(о 2 . (2.26)

Рис. 2.18.

Отметим, что все кинематические характеристики точек вращающегося тела пропорциональны расстояниям до оси вращения. Ве-

личины их определяют через производные одной и той же функции - угла поворота.

Векторные выражения для угловых и линейных кинематических характеристик. Для аналитического описания угловых кинематических характеристик вращающегося тела вместе с осью вращения вводят понятие вектора угла поворота (рис. 2.19): ф = ф(/)А:, где к - еди

ничный вектор оси вращения

1; к =соп51 .

Направлен вектор ф по этой оси так, чтобы с «конца» его видеть

поворот, происходящим против хода часовой стрелки.

Рис. 2.19.

характеристик в векторной форме

Если известен вектор ф(/), то все остальные угловые характеристики вращательного движения можно представить в векторной форме:

  • вектор угловой скорости со = ф = ф к. Направление вектора угловой скорости определяет знак производной угла поворота;
  • вектор углового ускорения є = со = ф к. Направление этого вектора определяет знак производной угловой скорости.

Введенные векторы со и є позволяют получить векторные выражения для кинематических характеристик точек (см. рис. 2.19).

Заметим, что модуль вектора скорости точки совпадает с модулем векторного произведения вектора угловой скорости и радиуса-вектора: |сох г = согвіпа = сор. Учитывая направления векторов со и г и правило направления векторного произведения, можно записать выражение для вектора скорости:

V = со хг.

Аналогично легко показать, что

  • ? X Ґ
  • - егБіпа = єр = а т и

Сосор = со р = я.

(роме этого векторы этих кинематических характеристик совпадают по направлению с соответствующими векторными произведениями.

Следовательно, векторы касательного и нормального ускорений можно представить в виде векторных произведений:

  • (2.28)
  • (2.29)

а х = г х г

а = со х V.

В природе и технике мы часто сталкиваемся с проявлением вращательного движения твердых тел, например, валов и шестерен. Как в физике описывают этот тип движения, какие формулы и уравнения для этого применяются, эти и другие вопросы освещаются в данной статье.

Что такое вращение?

Каждый из нас интуитивно представляет, о каком движении пойдет речь. Вращение - это процесс, при котором тело или материальная точка движется по круговой траектории вокруг некоторой оси. С геометрической точки зрения твердого тела - это прямая, расстояние до которой в процессе перемещения остается неизменным. Это расстояние называют радиусом вращения. Далее будем обозначать его буквой r. Если ось вращения проходит через центр масс тела, то ее называют собственной осью. Примером вращения вокруг собственной оси является соответствующее движение планет Солнечной системы.

Чтобы вращение происходило, должно существовать центростремительное ускорение, которое возникает за счет центростремительной силы. Эта сила направлена от центра масс тела к оси вращения. Природа центростремительной силы может быть самой разной. Так, в космическом масштабе ее роль выполняет гравитация, если тело закреплено нитью, то сила натяжения последней будет центростремительной. Когда тело вращается вокруг собственной оси, роль центростремительной силы играет внутреннее электрохимическое взаимодействие между составляющими тело элементами (молекулами, атомами).

Необходимо понимать, что без присутствия центростремительной силы тело будет двигаться прямолинейно.

Описывающие вращение физические величины

Во-первых, это динамические характеристики. К ним относятся:

  • момент импульса L;
  • момент инерции I;
  • момент силы M.

Во-вторых, это кинематические характеристики. Перечислим их:

  • угол поворота θ;
  • скорость угловая ω;
  • ускорение угловое α.

Кратко опишем каждую из названных величин.

Момент импульса определяется по формуле:

Где p - линейный импульс, m - масса материальной точки, v - ее линейная скорость.

Момент инерции материальной точки рассчитывается с помощью выражения:

Для любого тела сложной формы величина I рассчитывается, как интегральная сумма моментов инерции материальных точек.

Момент силы M вычисляется так:

Здесь F - внешняя сила, d - расстояние от точки ее приложения до оси вращения.

Физический смысл всех величин, в названии которых присутствует слово "момент", аналогично смыслу соответствующих линейных величин. Например, момент силы показывает возможность приложенной силы сообщить системе вращающихся тел.

Кинематические характеристики математически определяются следующими формулами:

Как видно из этих выражений, угловые характеристики аналогичны по своему смыслу линейным (скорости v и ускорению a), только они применимы для круговой траектории.

Динамика вращения

В физике изучение вращательного движения твердого тела осуществляется с помощью двух разделов механики: динамики и кинематики. Начнем с динамики.

Динамика изучает внешние силы, действующие на систему вращающихся тел. Сразу запишем уравнение вращательного движения твердого тела, а затем, разберем его составные части. Итак, это уравнение имеет вид:

Который действует на систему, обладающую моментом инерции I, вызывает появление углового ускорения α. Чем меньше величина I, тем легче с помощью определенного момента M раскрутить систему до больших скоростей за малые промежутки времени. Например, металлический стержень легче вращать вдоль его оси, чем перпендикулярно ей. Однако, тот же стержень легче вращать вокруг оси, перпендикулярной ему, и проходящей через центр масс, чем через его конец.

Закон сохранения величины L

Выше была введена эта величина, она называется моментом импульса. Уравнение вращательного движения твердого тела, представленное в предыдущем пункте, часто записывают в иной форме:

Если момент внешних сил M действует на систему в течение времени dt, то он вызывает изменение момента импульса системы на величину dL. Соответственно, если момент сил равен нулю, тогда L = const. Это и есть закон сохранения величины L. Для нее, используя связь между линейной и угловой скоростью, можно записать:

L = m*v*r = m*ω*r 2 = I*ω.

Таким образом, при отсутствии момента сил произведение угловой скорости и момента инерции является постоянной величиной. Этот физический закон используют фигуристы в своих выступлениях или искусственные спутники, которые необходимо повернуть вокруг собственной оси в открытом космосе.

Центростремительное ускорение

Выше, при изучении вращательного движения твердого тела, уже была описана эта величина. Также была отмечена природа центростремительных сил. Здесь лишь дополним эту информацию и приведем соответствующие формулы для расчета этого ускорения. Обозначим его a c .

Поскольку центростремительная сила направлена перпендикулярно оси и проходит через нее, то момента она не создает. То есть эта сила не оказывает совершенно никакого влияния на кинематические характеристики вращения. Тем не менее, она создает центростремительное ускорение. Приведем две формулы для его определения:

Таким образом, чем больше угловая скорость и радиус, тем большую силу следует приложить, чтобы удержать тело на круговой траектории. Ярким примером этого физического процесса является занос автомобиля во время поворота. Занос возникает, если центростремительная сила, роль которой играет сила трения, становится меньше, чем центробежная сила (инерционная характеристика).

Три основные кинематические характеристики были перечислены выше в статье. твердого тела формулами следующими описывается:

θ = ω*t => ω = const., α = 0;

θ = ω 0 *t + α*t 2 /2 => ω = ω 0 + α*t, α = const.

В первой строке приведены формулы для равномерного вращения, которое предполагает отсутствие внешнего момента сил, действующего на систему. Во второй строке записаны формулы для равноускоренного движения по окружности.

Отметим, что вращение может происходить не только с положительным ускорением, но и с отрицательным. В этом случае в формулах второй строки следует перед вторым слагаемым поставить знак минус.

Пример решения задачи

На металлический вал в течение 10 секунд действовал момент силы 1000 Н*м. Зная, что момент инерции вала равен 50 кг*м 2 , необходимо определить угловую скорость, которую придал валу упомянутый момент силы.

Применяя основное уравнение вращения, вычислим ускорение вала:

Поскольку это угловое ускорение действовало на вал в течение времени t = 10 секунд, то для вычисления угловой скорости применяем формулу равноускоренного движения:

ω = ω 0 + α*t = M/I*t.

Здесь ω 0 = 0 (вал не вращался до действия момента сил M).

Подставляем в равенство численные значения величин, получаем:

ω = 1000/50*10 = 200 рад/с.

Чтобы это число перевести в привычные обороты в секунду, необходимо его поделить на 2*pi. Выполнив это действие, получаем, что вал будет вращаться с частотой 31,8 об./с.

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .





error: Контент защищен !!