Оценка научных успехов и достижений. Научные основы разработки норм оценок учебных достижений учащихся

Научные открытия происходят каждый день и меняют мир, в котором мы живем. В этом списке есть ряд сумасшедших научных инноваций, и все они были сделаны в прошлом году. Технологические и медицинские открытия, в которые люди просто не могут поверить, свершаются каждый день и продолжают свершаться с завидной периодичностью. Эти открытия приносят с собой множество новых технологий и методов, которые будут только расти и совершенствоваться с течением времени.


Умение контролировать движение объекта - это что-то из области научной фантастики, но благодаря исследователям из Колледжа науки и техники Миннесоты оно стало реальностью. Используя неинвазивный метод, известный как электроэнцефалография, задействующий мозговые волны, пятеро студентов смогли управлять движением вертолета.

Глядя в противоположную от вертолета сторону, студенты смогли двигать транспорт в различных направлениях, имитируя движения левой руки, правой руки и обеих рук. Спустя некоторое время участники проекта смогли выполнить с вертолетом несколько маневров, включая прохождение через кольцо. Ученые надеются улучшить эту неинвазивную технологию управления мозговыми волнами, что в конечном счете поможет восстановить движение, слух и зрение у пациентов, страдающих от паралича или нейродегенеративных расстройств.

МРТ сердца


Антрациклин остается эффективной формой химиотерапии, но уже доказано, что он может повредить сердца детей, проходящих лечение. Как правило, у большинства детей, пострадавших от этого порока сердца, было обнаружено, что стенки их сердец истончились, а к моменту диагностирования было уже слишком поздно, чтобы что-то делать. Ультразвук зачастую упускает пороки сердца на ранних стадиях исследования и обнаруживает их только когда необратимые повреждения уже приняли свое.

В прошлом году появилась принципиально новая техника. В ходе всесторонних испытаний выяснилось, что T1 МРТ может быть более точным, эффективным и безопасным методом выявления сердечно-сосудистых заболеваний у детей. Врачи смогли увидеть детские пороки сердца раньше и более эффективно, нежели с УЗИ (которые ошибочно показывают, что сердце прекрасно себя чувствует). Это отличный медицинский прогресс для выявления сердечных заболеваний детей раннего возраста.

Эффективный электролиз (расщепление соленой воды)


В гонке в поисках эффективных и богатых альтернативных видов топлива исследователи постоянно пытаются найти способ эффективного расщепления морской воды для производства водородного топлива. В июне прошлого года команда Австралийского исследовательского центра науки электроматериалов обнародовала катализатор, который способен расщеплять океаническую воду, задействовав не очень много энергии.

Катализатор был воплощен в гибкий пластиковый бак, который впитывает и использует энергию, полученную от света, для окисления морской воды. В отличие от существующих методов, которые требуют большого количества энергии для окисления воды, этот метод может вырабатывать достаточно энергии для питания среднего дома и автомобиля в течение целого дня, используя только 5 литров морской воды.

В этом баке содержатся синтетические молекулы хлорофилла, использующие энергию солнца подобно тому, как это делают растения и водоросли. Химических проблем в этом методе тоже нет, в отличие от нынешнего метода расщепления воды, в процессе которого испускаются облака ядовитого газа - хлора.

Этот действенный и эффективный метод может существенно снизить затраты на водородное топливо, что позволит ему стать конкурентоспособным бензину альтернативным топливом в будущем.

Крошечная батарея


С изобретением 3D-принтеров пределы для типов сложных и комплексных объектов, которые можно создать, существенно расширились. В прошлом году команда исследователей из Гарварда и Университета Иллинойса смогли синтезировать литий-ионный аккумулятор, который меньше песчинки и тоньше человеческого волоса.

Столь поразительных размеров удалось достичь с помощью тонкого наслоения сети переплетенных электродов. После того как на компьютере был сделан 3D-проект, принтер использовал специально изготовленные жидкие краски, содержащие электроды, которые должны были немедленно затвердевать, попадая на воздух. Такому устройству может найтись масса применений, и все благодаря его размерам. Впрочем, на 3D-принтерах уже кровеносную систему сосудов, поэтому электродами мало кого удивишь.

До появления этой батарейки существование невероятно малых объектов батарейного питания было практически невозможным. Дело в том, что для создания подобных батареек нужны были подобные батарейки, которые могли передать первым энергию. 3D-принтер использует чернила и детальный проект компьютерной программы, создавая подобные микробатарейки.

Биоинженерные части тела


6 июня 2013 года группа врачей в Университете Дюка успешно имплантировала первый биоинженерный кровеносный сосуд живому пациенту. Хотя биоинженерия развивается семимильными шагами, эта процедура стала первой успешной имплантацией искусственной биоинженерной части тела.

Вена была имплантирована пациенту, страдающему от конечной стадии заболеваний почек. Сначала ее синтезировали из донорской клетки человека на своеобразных «лесах». Для того чтобы предотвратить атаку инородного тела любыми антителами у пациента, из вены удалили качества, которые могли спровоцировать эту атаку. И сосуд оказался более успешным, нежели имплантаты синтетического или животного происхождения, поскольку не был склонен к свертыванию и не представлял риск заражения во время операции.

Невероятно, но вены изготовлены из тех же гибких материалов, которые их соединяют, а также принимают свойства от клеточной среды и других вен. С успехом такой процедуры эта новая область имеет огромные последствия для дальнейшего развития в мире медицины. Кроме того, через 10-15 лет будет напечатано биоинженерное сердце, если верить прогнозам.

Четырехкварковая частица


Поиск объяснения рождения нашей Вселенной был существенно разогрет после прошлогоднего объявления об обнаружении частицы из четырех кварков. Хотя вам эта находка может показаться не такой уж и важной, для физиков она поднимает ряд новых объяснений и теорий о создании первой материи. До того момента объяснение создания материи было существенно ограничено тем, что были обнаружены лишь частицы с двумя или тремя кварками.

Ученые назвали новую частицу Zc (3900), и они предполагают, что она была создана в первые, неистово горячие секунды после Большого Взрыва. После нескольких лет сложных математических вычислений, проводимых коллаборацией BaBar в Национальной лаборатории ускорения SLAC (аффилированной со Стэнфордским университетом), ученые, работающие на Пекинском электро-позитронном коллайдере (BEPCII) обнаружили эту частицу по ряду случаев. Поскольку ученые вообще весьма щедрый народ, результатами поделились с ребятами на CERN и HEARO в Цукубе, . Это те же ученые, которые недавно наблюдали и выделили 159 подобных частиц. Однако частице не хватало обоснования, пока ученые с детектора Belle в Пекине не подтвердили выделение 307 отдельных частиц этого типа.

Ученые утверждают, что понадобилось провести 10 триллионов триллионов субатомных столкновений в их детекторе, который в два раза больше знаменитого Большого адронного коллайдера в Швейцарии. Некоторые физики выступили с критикой наблюдений, утверждая, что частица является не более, чем двумя мезонами (две кварковых частицы), соединенными вместе. Несмотря на это, частица была принята.

Альтернативное микробное топливо


Представьте себе мир, в котором высокоэффективное и недорогое альтернативное топливо можно было бы получить так же легко, как кислород из воздуха вокруг нас. Благодаря коллаборации Министерства энергетики США и команде исследователей в Университете Дюка, у нас могут быть микроорганизмы, которые воплотят мечту в реальность. В последние годы наблюдается все больше успехов в мире альтернативных видов топлива (например, этанола из кукурузы и сахарного тростника). К сожалению, эти методы весьма неэффективны и не выдерживают критику. Не так давно ученые смогли придумать электротопливо, которое сможет «поедать» солнечную энергию, не отнимая у нас воду, еду или землю, подобно большинству альтернативных видов топлива.

В дополнение к низкой потребности в энергии, крошечные микробы могут эффективно синтезировать это электротопливо в лаборатории. Электротопливные микробы были выделены и обнаружены в нефотосинтезирующих бактериях. Они используют электроны в почве в виде пищи и поедают энергию для производства бутанола, взаимодействуя с электричеством и углекислым газом. Используя эту информацию и проведя некоторые манипуляции с генами, ученые включили данный вид микробов в выращенные в лаборатории культуры бактерий, позволив им производить бутанол в огромных количествах. Бутанол сейчас выглядит лучшей альтернативой как этанолу, так и бензину по множеству причин. Будучи более крупной молекулой, бутанол обладает большими возможностями для хранения энергии, нежели этанол, и не абсорбирует воду, поэтому вполне может находиться в газовых баках любого автомобиля и передаваться через бензиновые трубопроводы. Бутаноловые микробы стали многообещающим маяком эпохи альтернативных видов топлива.

Медицинские преимущества серебра


Исследование о пользе использования серебра в антибиотиках было опубликовано 19 июня прошлого года исследователями Бостонского университета. В то время как уже давно известно, что серебро обладает сильными антибактериальными свойствами, ученые только недавно обнаружили, что оно может превращать обычные антибиотики в антибиотики на стероидах.

В настоящее время известно, что серебро использует множество химических процессов, чтобы препятствовать размножению бактерий, замедлять скорость их метаболизма и нарушать гомеостаз. Эти процессы приводят к ослаблению бактерий и делают их более восприимчивыми к антибиотикам. Множество исследований показало, что смесь серебра и антибиотиков была до 1000 раз более эффективной в убийстве бактерий, нежели просто антибиотики.

Некоторые критики предупреждают, что серебро может оказывать токсичные эффекты на пациентов, но ученые не соглашаются с этим, утверждая, что небольшие и нетоксичные количества серебра только увеличивают эффективность антибиотиков, не принося вреда при лечении. Это весьма интересное открытие для медицинского мира, а применение драгоценных металлов продолжает развиваться в количественном и качественном отношении.

Зрение для слепых


Первый прототип бионического глаза командой австралийских биоинженеров в начале июня прошлого года. Бионический глаз работает с помощью чипа, имплантированного в череп пользователя, а после подключенного к цифровой камере в очках. В то время как очки в настоящее время позволяют пользователю только видеть очертания, прототип должен значительно улучшиться в будущем. Как только камера захватывает изображение, сигнал изменяется и посылается по беспроводному каналу на микрочип. Оттуда сигнал активирует точки на микрочипе, имплантированном в отдел коры головного мозга, отвечающий за зрение. Команда исследователей надеется, что в будущем легкие, удобные и ненавязчивые очки смогут обеспечить максимум комфорта людям с плохим зрением. Их смогут использовать 85% слепых людей.

Иммунитет к раку


В прошлом году Университет Рочестера , в котором рассматривается механизм противостояния раку у голых землекопов. Эти жутковатые подземные грызуны не самые симпатичные на этой планете, но именно они будут смеяться последними, когда все живое будет умирать от рака.

В пространствах между клетками тел голых землекопов был обнаружен липкий сахар, гиалуронан (HA), и он, похоже, препятствует тесному разрастанию клеток и образованию опухолей. Грубо говоря, это вещество останавливает размножение клеток, как только они достигают определенной плотности. Причиной повышенного количества этого сахара является, как думают ученые, двойная мутация в двух энзимах, способствующих росту HA.

Было обнаружено, что в клетке с низким уровнем HA рак быстро разрастается, но в клетках с высоким уровнем HA опухоль не формируется. Ученые надеются модифицировать лабораторных крыс для получения больших количеств HA и выработать у них иммунитет к раку.

В связи с субъективной природой научных знаний, научные исследования и инновационные разработки трудно поддаются количественному измерению.

В самом широком смысле эффект научной деятельности проявляется в изменении структуры производства в пользу наукоемких отраслей, повышении производительности труда и эффективности производства.

Разнообразие «выходов» научных исследований и разработок, форм их воздействия на экономику, а также сложности их непосредственной оценки обусловили необходимость применения в оценке результатов научной деятельности эвристических и эмпирических методов и показателей, зачастую лишь косвенно характеризующих эффект научной деятельности и базирующихся на дополнительных источниках информации, прежде всего экспертного характера.

Например, для оценки результатов фундаментальных научных исследований используются такие показатели, как количество научных публикаций, их цитируемость, и соавторство (для научных связей между странами). Эти оценки применяются для анализа выполнения исследовательских программ и принятия решений о целесообразности их финансирования.

Количественному измерению технологических результатов научных исследований и разработок служит патентная форма сбора информации. Однако и здесь возникают проблема оценки уровня новизны изобретения.

Патенты – уникальный источник технологической информации, поскольку содержащиеся в них сведения обычно не представлены нигде более и, кроме того, патентование, как правило, на 2-3 года опережает внедрение научно-технических достижений в производство. Поэтому показатели патентной формы отчетности служат для анализа состояния и перспектив развития отдельных областей науки и техники, технологических направлений, оценки рынка технологий в стране. К наиболее важным показателям относятся: число патентных заявок, поданных (полученных) в стране и за рубежом; общее число действующих патентов, зарегистрированных в стране.

Для характеристики уровня изобретательской активности, интенсивности распространения национальных научно-технических достижений, степени технологической зависимости страны применяются следующие коэффициенты:

· изобретательской активности (число заявок на изобретения отечественных заявителей в патентном ведомстве страны, в расчете на 10 тыс. человек);

· самообеспеченности (отношение числа патентных заявок, поданных отечественными заявителями внутри страны, к общему числу патентных заявок, поданных в патентное ведомство страны);

· технологической зависимости (отношение числа патентных заявок, поданных зарубежными заявителями в патентное ведомство страны, к числу внутренних патентных заявок, поданных отечественными заявителями);

· распространения (отношение числа внешних патентных заявок, поданных отечественными заявителями за рубежом, к числу внутренних заявок на изобретения, поданных ими в национальное патентное ведомство).

В экономике, основанной на знаниях, важную роль играет кооперация в сфере исследований и разработок, передача технологий и передового опыта, которая стала объектом межгосударственных соглашений, инновационных и инвестиционных проектов, коммерческих сделок вне национальных границ.

С выходом украинских НИИ на зарубежные рынки и привлечением иностранных инвестиций в отечественную науку и экономику встает задача анализа информации об экспорте-импорте технологий. Для этого используются нематериальные сделки, связанные с обменом (торговлей) знаниями, информацией и услугами технологического содержания с зарубежными странами. Учету подлежат сделки, имеющие международную направленность (т.е. включающие партнеров из разных стран), носящие коммерческий характер (при наличии платежей либо поступлений от их совершения) и относящиеся к торговле технологиями или оказанию связанных с этим услуг. В их числе:

· передача технологий (прав на патенты, патентных лицензий, ноу-хау);

· передача товарных знаков, соглашения по промышленным образцам;

· оказание услуг по подготовке и проектированию производства;

· соглашения по научным исследованиям, выполняемым специалистами Украины за рубежом и финансируемым из иностранных источников (экспорт технологий) либо осуществляемым зарубежными специалистами в Украине и финансируемым из отечественных источников (импорт технологий).

Собирается информация о числе подобных соглашений (по видам), суммах поступлений и выплат по ним. На этой основе в составе платежного баланса страны формируется баланс платежей за технологии как совокупность перечислений денежных средств по всем нематериальным сделкам, связанным с экспортом и импортом технологий. Данные баланса рассматриваются в разрезе видов экономической деятельности и стран-партнеров с выделением операций между материнскими и дочерними предприятиями разных государств. Баланс платежей за технологии требует тщательной интерпретации. В отличие от внешнеторгового баланса, отрицательное сальдо баланса платежей за технологии, может иметь позитивное значение для экономики страны как признак интенсивного освоения зарубежных научно-технических достижений в целях повышения технологического уровня и конкурентоспособности производства. И наоборот, положительное сальдо может свидетельствовать о низкой способности национальной экономики к адаптации новых технологий.

Поиск критерия эффективности развития науки и выражающих ее показателей упирается в сложность, а иногда и невозможность количественного измерения результатов новых научных знаний, последствий их практической реализации в экономике. Научные исследования как таковые обладают лишь потенциальным эффектом, поэтому выделение их доли в совокупном эффекте научно-технического прогресса является сложной задачей. Приходится оперировать специальными методами, позволяющими оценить сдвиги в экономике, связанных с внедрением и распространением научно-технических достижений.

Одним из показателей прогрессивных изменений в технологической базепроизводства на микроуровне является степень применения передовых производственных технологий, которые базируются на применении современных информационных технологий, используемых при проектировании и производстве. Типичными их примеры – технологические процессы, включающие системы автоматизированного конструирования и проектирования, гибкие производственные центры, транспортные роботы, системы управления базами данных и знаний. Они могут быть объединены системами связи (локальными вычислительными сетями) в единую производственную систему. Передовые производственные технологии, автоматизируют весь цикл разработки, освоения и выпуска продукции (и управление этим процессом), обеспечивают снижение себестоимости продукции, повышение ее качества и конкурентоспособности.

В качестве интегральной характеристики результативности науки используется отношение затрат на научные исследования к результатам производства - наукоемкость производства. Расчеты наукоемкости проводятся на уровне видов продукции, товарных групп, предприятий, отраслей и экономики в целом.

На макроуровне показатель наукоемкости - это отношение внутренних затрат на научные исследования и разработки к ВВП. Он отражает достижения страны в сфере науки и технологий.

На уровне отраслей, предприятий, видов продукции показатели наукоемкости - это отношения внутренних затрат на исследования и разработки к объему производства продукции (работ, услуг). Наряду с прямой наукоемкостью проводится оценка показателей полной наукоемкости с учетом промежуточного потребления в отраслях, т.е. затрат на научные исследования и разработки, воплощенных в стоимости сырья, материалов, энергии, обору­дования, комплектующих и т.п. На этой основе отрасли их продукция делится на высоко-, средне- и низкотехнологичную, в зависимости от уровня полной наукоемкости в сравнении со средним по рассматриваемой совокупности.

1, 2 Сабденова У.О. 1, 2 Еримбетова А.А. 1, 2 Калбирова А.К. 1, 2

1 Южно-Казахстанский государственный университет им. М. Ауезова

2 Южно-Казахстанский государственный педагогический институт

В статье рассматривается психолого-педагогические основы контроля и воздействия оценки на развитие учащегося.

система оценивания

количественное содержание критериев

самооценивание

уровень качественной оценки

1. Система критериального оценивания учебных достижений учащихся. Методическое пособие / Национальная академия образования им. И. Алтынсарина, 2013. – 100 c.

2. Национальный отчет НЦОКО МОН РК «Результаты международного исследования PISA-2009» // Электронный ресурс. – Режим доступа: rgcnto.edu-kost.kz›ru/component.

3. Международные исследования PISA:Национальный отчет по итогам международного исследования PISA-2009 в Казахстане/ 2010 [Электронный ресурс]. – Режим доступа: naric.kz›index-49.php.htm.

4. Государственная программа развития образования Республики Казахстан на 2011-2020 годы. Указ Президента Республики Казахстан от 7 декабря 2010 года № 1118.

5. Международная система оценивания знаний / on 28 September 2011 [Электронный ресурс]. – Режим доступа: http://ru.wikipedia.org/w/.

6. Система_оценивания_знаний: качества освоения образовательных программ учащимся, важнейший элемент образовательного процесса [Электронный ресурс]. – Режим доступа: wiki/ru.wikipedia.org›wiki.

Проблема оценивания как компонента учебной деятельности многоаспектна. В психолого-педагогической литературе особое место занимает понимание оценки как индивидуально-личностных качеств учащегося, так и результатов его учебной деятельности.

Оценка успешности учебной деятельности учащихся может выражаться в следующих формах:

Малые формы (проявляющиеся в мимике, жестах, модуляции голоса, кратких замечаниях по поводу успеваемости и др.);

Общей характеристики учащегося;

Отметки;

Оценочных высказываний (в индивидуальных беседах с учеником, на родительских собраниях);

В других формах, предусмотренных внутренним распорядком конкретной школы.

В психологических и педагогических исследованиях выделены различные стороны оценки: сущность, роль, функции оценки, структура оценочной деятельности учителя и другие. Но не нашли окончательного решения такие аспекты данной проблемы, как: выработка единой системы оценочных критериев учебных достижений учащихся, субъективность отметок, влияние личностных особенностей учителей и учащихся на выставление и получение отметки. Без их решения, полагаем, трудно успешно реализовать задачу развития личности.

Воздействие оценки на развитие учащегося многосторонне, она может обладать многими функциями. Оценка может быть:

а) ориентирующей - воздействует на умственную работу учащегося, которая содействует осознанию процесса конкретной работы и пониманию им собственных знаний;

б) стимулирующей - воздействует на аффективно-волевую сферу учащегося, посредством переживания успеха или неуспеха, формирования притязаний и намерений, поступков и отношений;

в) воспитывающей, где происходит «ускорение или замедление» темпов умственной работы, качественные сдвиги, изменение в структуре влияния на восприятие предметов окружающего мира предшествующего опыта и установок индивида, т.е. преобразование интеллектуальных механизмов. Оценка воздействует на личность школьника в целом. Педагогическая оценка воздействует на изменение отношений и мнений, существующих в школе между классом и учеником .

При организации процесса критериального оценивания учебных достижений обучающихся должны учитываться ряд психолого-педагогических особенностей учебно-познавательной деятельности учащегося: самостоятельность, проявляющаяся в собственном желании быть готовым и способным расширять свои знания, умения, находить пути решения личностно-значимых учебных задач, адекватно оценить свои учебные достижения. Также стремление учащегося к выбору индивидуальной образовательной траектории и поиску способов ее построения; развитие учебно-познавательной активности в процессе учебной деятельности и самостоятельных занятий; стремление к общению с одноклассниками, его заинтересованность в оценке сверстников, т.е. осуществление взаимооценивания; формирование теоретического и критического мышления; избирательность, становление устойчивого внимания - повышение концентрации внимания, целенаправленность восприятия.

Психолого-педагогические основы контроля состоят в выявлении недостатков в работе учащихся, установлении их характера и причин с целью устранения этих недостатков. Учителю важно иметь информацию, как об усвоении учеником знаний, так и о том, каким путем они добыты. Проверка знаний есть форма закрепления, уточнения, осмысления и систематизации знаний учащихся. Слушая отвечающего товарища, учащиеся вместе с тем как бы вновь повторяют то, что они выучили сами накануне. И чем лучше организована проверка, тем больше условий для такого закрепления. Если учесть, что главная учебная задача учителя заключается в том, чтобы весь программный объем знаний был усвоен детьми, то станет ясно, что без специальной проверки знаний не обойтись. Ёе надо организовать так, чтобы действительные знания были выявлены как можно глубже и полнее. Современные тенденции в развитии системы оценивания в целом заключаются в сравнении индивидуальных достижений учащегося с определенными критериями, основанными на компетентностном подходе и новой образовательной парадигме. На основе данных подходов составляются образовательные стандарты, выдвигающие требования к введению в педагогическую практику образовательных организаций новой критериальной системы оценивания.

Критериальное оценивание трактуется как процесс, основанный на сравнении учебных достижений учащихся с четко определенными, коллективно выработанными, заранее известными всем участникам процесса критериями, соответствующие целям и содержанию образования, способствующий формированию учебно-познавательной компетентности учащихся.

Критериальное оценивание осуществляется в соответствии с содержанием учебных программ, формами контрольных мероприятий, индивидуальными психолого-педагогическими особенностями учащихся; на основе единства формирующего и констатирующего оценивания, заключающегося в целостном использовании промежуточного и итогового контроля учебных достижений учащихся; осознанности, служащей действенной характеристикой процесса контроля учебных достижений учащихся; диагностической основы, осуществляющейся в проведении педагогической диагностики эффективности использования данной технологии.

Критериальное оценивание определяет цель создания условий и возможностей для формирования и развития учебно-познавательной активности учащихся, их творческой и исследовательской сферы, учебной самостоятельности и ориентации в потоке научной информации путем приобщения учащихся к систематической рефлексии, к поиску смысла этой деятельности.

Библиографическая ссылка

Ермаханов М.Н., Асылбекова Г.Т., Куандыкова Э.Т., Диканбаева А.К., Кадирова Р.Б., Сабденова У.О., Еримбетова А.А., Калбирова А.К. НАУЧНЫЕ ОСНОВЫ РАЗРАБОТКИ НОРМ ОЦЕНОК УЧЕБНЫХ ДОСТИЖЕНИЙ УЧАЩИХСЯ // Международный журнал прикладных и фундаментальных исследований. – 2016. – № 8-1. – С. 74-75;
URL: https://applied-research.ru/ru/article/view?id=9928 (дата обращения: 26.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
  • 2.2. Масштабы расстояний во Вселенной. Методы оценок размеров и расстояний
  • 2.3. Понятие «время» в своем развитии
  • 2.4. Временные масштабы во Вселенной. Методы измерения времени
  • 2.5. Структурные уровни организации материи
  • 2.6. Понятие «поле». Уравнения Максвелла. Свет - электромагнитная волна
  • 2.7. Типы фундаментальных взаимодействий в физике
  • 2.8. Попытки построения Теории Всего Сущего
  • Глава 3
  • 3.1. Модель материальной точки и законы классической механики
  • 3.3. Движения планет и законы Кеплера
  • 3.4. Закон всемирного тяготения
  • 3.5. Связь законов сохранения со свойствами пространства и времени
  • 3.6. Колебания и волны в природе и их описание. Гармонический осциллятор
  • 3.7. Распространение звука в средах и реакция организма на звуковые волны
  • 3.8. Описание волновых процессов. Типы и свойства волн. Спектр и его анализ
  • 3.9. Эффект Доплера, его исследование и значение для науки
  • 3.10. Явление резонанса. Резонансы в движении планет
  • Глава 4
  • 4.1. Теплота, температура и механический эквивалент теплоты
  • 4.2. Понятие «внутренняя энергия». Первое начало термодинамики
  • 4.3. Преобразование тепловой энергии в механическую работу
  • 4.4. Понятие «энтропия». Суть спора о «тепловой смерти Вселенной»
  • 4.5. Начала термодинамики. Энтропия и вероятность. Принцип Больцмана
  • 4.6. Микро- и макропеременные в описании систем. Основные модели
  • 4.7. Основные положения молекулярно-кинетической теории и эмпирические газовые законы
  • 4.8. Связь параметров газа с его микроструктурой. Распределение Максвелла
  • 4.9. Распределение частиц газа во внешнем поле и в атмосферах планет
  • 4.10. Понятие «флуктуация» и точность измерений
  • 4.11. Процессы обратимые и необратимые. Принцип локального равновесия
  • Глава 5
  • 5.2. Волновые свойства света. Спектр электромагнитного излучения
  • 5.3. Явление дисперсии сред и доказательство материального единства мира
  • 5.4. Законы теплового излучения, кризис классической теории и появление квантовой гипотезы
  • 5.5. Открытие электрона и радиоактивности. Рождение представлений о сложном строении атома
  • 5.6. Планетарная модель строения атома. Современная наука и постулаты Бора
  • 5.7. Корпускулярные свойства света. Фотоны Эйнштейна и доказательство их реальности
  • 5.8. Поглощение и испускание квантов света. Спонтанное и вынужденное излучения
  • 5.9. Корпускулярно-волновые свойства вещества и значение их открытия
  • Глава 6 концепции взаимодействий и структур в микромире
  • 6.1. Описание движения микрочастиц. Принципы дополнительности и причинности
  • 6.2. Принципы соответствия и неопределенности. Роль прибора и процесса измерения в квантовой механике
  • 6.3. Строение химических элементов и понимание Периодической таблицы Менделеева
  • 6.4. Радиоактивные элементы и возможности превращения элементов
  • 6.5. Представления о строении атомного ядра
  • 6.6. Элементарные частицы и проблема поиска «первичных объектов»
  • Глава 7
  • 7.1. Представление о строении молекул
  • 7.2. Развитие представлений о составе веществ. Законы стехиометрии
  • 7.3. Развитие структурной химии
  • 7.4. Строение веществ в разных агрегатных состояниях
  • 7.5. Строение и свойства металлов
  • 7.6. Структура и уникальные свойства воды
  • 7.7. Строение и свойства атома углерода, определившие его роль в природе
  • Глава 8 концепции процессов и возможности управления ими
  • 8.1. Химический катализ и методы управления химическими процессами
  • 8.2. Цепные реакции и свободные радикалы
  • 8.3. Особенности растворения в воде различных веществ
  • 8.4. Процессы диффузии и осмоса, их роль в клеточных мембранах
  • 8.5. Понятия фазы и фазового перехода. Фазовые переходы первого и второго рода
  • 8.6. Сверхтекучесть и сверхпроводимость
  • 8.7. Возникновение самоорганизации в неравновесных системах. Понятие обратных связей
  • Глава 9
  • 9.2. Звезды, их характеристики и эволюция
  • 9.3. Переменные звезды и их эволюция. Конечные стадии эволюции звезд и Солнца
  • 9.4. Галактика, ее форма и строение. Солнечная система в Галактике
  • 9.5. Многообразие мира галактик. Содержание и значение закона Хаббла
  • 9.6. Сценарий стационарной Вселенной и «Космология Большого Взрыва»
  • 9.7. Рождение частиц по современной модели развития Вселенной
  • 9.8. Модель инфляционной Вселенной. Возникновение во Вселенной крупномасштабных неоднородностей
  • Глава 10
  • 10.2. Формирование малых тел Солнечной системы, Луны и Земли. Движения Земли, строение геосфер и изучение процессов
  • 10.3. Распространенность и круговороты химических элементов на Земле
  • 10.4. Модели появления геологических структур на поверхности Земли
  • 10.5. Геохронологическая шкала эволюции Земли
  • 10.6. Самоорганизация при образовании планет и взаимодействии геосфер
  • Глава 11
  • 11.2. Основные свойства живой материи
  • 11.3. Уровни организации живой природы на Земле
  • 11.4. Молекулярно-генетический уровень организации живой материи. Строение и структура макромолекул белков
  • 11.5. Установление строения и структуры молекул днк и рнк
  • 11.6. Молекулярные механизмы генетической репродукции, синтеза белка и изменчивости
  • 11.7. Молекулярный механизм процессов обмена веществ и энергии
  • 11.8. Молекулярные основы воспроизведения генетической информации и осуществления связи между клетками
  • Глава 12
  • 12.2. Строение и функции основных органелл клетки
  • 12.3. Функции клеточных мембран. Работа «ионного насоса»
  • 12.4. Процессы фотосинтеза и клеточного дыхания
  • 12.6. Понятие о неодарвинизме и синтетической теории эволюции
  • 12.7. Понятия микро- и макроэволюции. Естественный отбор - направляющий фактор эволюции
  • 12.8. Основные гипотезы происхождения живого
  • 12.9. Концепция происхождения живого по гипотезе Опарина-Холдейна
  • 12.10. Современная оценка концепции биохимической эволюции в биологии
  • Глава 13
  • 13.2. Порядок и хаос в больших системах. Понятие фрактала
  • 13.3. Пороговый характер самоорганизации и представление о теории катастроф
  • 13.4. Математические закономерности эволюции. Понятие бифуркации
  • 13.5. Синергетика - новый научный метод
  • 13.6. Эволюционная химия. Возникновение упорядоченности в химических реакциях
  • 13.7. Возникновение самоорганизации в морфогенезе
  • 13.8. Моделирование отношений между трофическими уровнями в биоценозах
  • 13.9. Элементы теории самоорганизованной критичности
  • Глава 14
  • 14.2. Распределение на Земле солнечной энергии. Биотический круговорот
  • 14.3. Связи между организмами в экосистеме
  • 14.4. Самоорганизация в формировании климата
  • 14.5. Концепции эволюции растительного и животного мира
  • 14.6. Человек - качественно новая ступень развития биосферы
  • 14.7. Концепции коэволюции и ноосферы
  • 14.8. Естественно-научная картина мира и общественная мысль
  • Заключение
  • Список литературы
  • Глава 4. Концепции классической термодинамики
  • Глава 5. Концепции строения и корпускулярно-волновой дуализм
  • Глава 6. Концепции взаимодействий и структур в микромире 208
  • Глава 7. Концепции строения вещества (от микромира
  • Глава 8. Концепции процессов и возможности управления ими 283
  • Глава 9. Концепции строения, эволюционных процессов
  • Глава 10. Концепции строения, эволюционных процессов
  • 1.7. Оценки научных успехов и достижений

    Ученых в служении миру и прогрессу объединяют общие принципы познания законов природы и общества, хотя наука XX в. сильно дифференцирована. Крупнейшие достижения человеческого разума обусловлены обменом научной информацией, переносом результатов теоретических и экспериментальных исследований из одной области в другую. От сотрудничества ученых разных стран зависит прогресс не только науки и техники, но и человеческой культуры и цивилизации в целом. Феномен XX в. в том, что число ученых за всю предшествующую историю человечества составляет лишь 0,1 от работающих в науке сейчас, т. е. 90 % ученых - наши современники. И как оценить их достижения? Различные научные центры, общества и академии, многочисленные научные комитеты разных стран и различные международные организации отмечают заслуги ученых, оценивая их личный вклад в развитие науки и значение их научных достижений или открытий. Существует множество критериев для оценки важности научных работ. Конкретные работы оценивают по количеству ссылок на них в работах других авторов или по числу переводов на другие языки мира. При таком методе, который имеет много недостатков, существенную помощь оказывает компьютерная программа по «индексам цитируемости». Но этот или аналогичные методы не позволяют увидеть «леса за отдельными деревьями». Существует система наград - медалей, премий, почетных званий в каждой стране и в мире.

    Среди самых престижных научных наград - премия, учрежденная 29 июня 1900 г. Альфредом Нобелем. По условиям его завещания премии должны присуждаться 1 раз в 5 лет лицам, которые сделали в предшествующем году открытия, внесшие принципиальный вклад в прогресс человечества. Но награждать стали и за работы или открытия последних лет, важность которых была оценена недавно. Первая премия в области физики была присуждена В. Рентгену в 1901 г. за открытие, сделанное 5 лет назад. Первым лауреатом Нобелевской премии за исследования в области химической кинетики стал Я.Вант-Гофф, а в области физиологии и медицины - Э. Беринг, ставший известным как создатель противодифтерийной антитоксичной сыворотки.

    Многие отечественные ученые также были удостоены этой престижной премии. В 1904 г. лауреатом Нобелевской премии по фи-

    зиологии и медицине стал И. П. Павлов, а в 1908 г. - И. И. Мечников. Среди отечественных Нобелевских лауреатов - академик Н.Н.Семенов (совместно с английским ученым С.Хиншельвудом) за исследования механизма цепных химических реакций (1956); физики И.Е.Тамм, И.М.Франк и П.А.Черенков - за открытие и исследование эффекта сверхсветового электрона (1958). За работы по теории конденсированных сред и жидкого гелия Нобелевская премия по физике была присуждена в 1962 г. академику Л. Д.Ландау. В 1964 г. лауреатами этой премии стали академики Н. Г. Басов и А. М. Прохоров (совместно с американцем Ч. Таунсом) за создание новой области науки - квантовой электроники. В 1978 г. Нобелевским лауреатом стал и академик П. Л. Капица за открытия и основополагающие изобретения в области низких температур. В 2000 г., как бы завершая век присуждения Нобелевских премий, академик Ж.И.Алферов (из Физико-технического института им. А.Ф.Иоффе, Санкт-Петербург, Россия) и Г.Кремер (из Калифорнийского университета, США) стали Нобелевскими лауреатами за разработку полупроводниковых гетерострук-тур, используемых в высокочастотной электронике и оптоэлект-ронике.

    Присуждение Нобелевской премии осуществляет Нобелевский комитет Шведской академии наук. В 60-е годы деятельность этого комитета была подвергнута критике, поскольку многие ученые, достигшие не менее ценных результатов, но работающие в составе больших коллективов или опубликовавшиеся в «непривычном» для членов комитета издании, не стали лауреатами Нобелевской премии. Например, в 1928 г. индийские ученые В. Раман и К. Кришнан исследовали спектральный состав света при прохождении его через различные жидкости и наблюдали новые линии спектра, смещенные в красную и синюю стороны. Несколько раньше и независимо от них аналогичное явление в кристаллах наблюдали советские физики Л.И.Мандельштам и Г.С.Ландсберг, опубликовав свои исследования в печати. Но В. Раман послал короткое сообщение в известный английский журнал, что обеспечило ему известность и Нобелевскую премию в 1930 г. за открытие комбинационного рассеяния света. В течение века исследования становились все более крупными и по количеству участников, поэтому присуждать индивидуальные премии, как это предусматривалось в завещании Нобеля, стало труднее. Кроме того, возникли и развились области знаний, не предусмотренные Нобелем.

    Организовались и новые международные премии. Так, в 1951 г. была учреждена Международная премия А. Галабера, присуждаемая за научные достижения в освоении космоса. Ее лауреатами стали многие советские ученые и космонавты. Среди них - главный теоретик космонавтики академик М. В. Келдыш и первый космонавт Земли Ю.А.Гагарин. Международная академия астронавтики учредила свою премию; ею отмечены работы М. В. Келдыша, О.Г.Газенко, Л.И.Седова, космонавтов А.Г.Николаева и

    В. И. Севастьянова. В 1969 г., например, Шведский банк учредил Нобелевскую премию по экономическим наукам (в 1975 г. ее получил советский математик Л.В.Канторович). Международный математический конгресс стал присуждать молодым ученым (до 40 лет) премию имени Дж. Филдса за достижения в области математики. Этой престижной премии, присуждаемой раз в 4 года, были удостоены молодые советские ученые С. П. Новиков (1970) и Г.А. Маргулис (1978). Многие премии, присуждаемые различными комитетами, приобрели в конце века статус международных. Например, медалью У. Г. Волластона, присуждаемой Лондонским геологическим обществом с 1831 г., были оценены заслуги наших геологов А. П. Карпинского и А. Е. Ферсмана. Кстати, в 1977 г. фонд г. Гамбурга учредил премию А. П. Карпинского, русского и советского геолога, президента Академии наук СССР с 1917 по 1936 г. Эта премия присуждается ежегодно нашим соотечественникам за выдающиеся достижения в области естественных и общественных наук. Лауреатами премии стали выдающиеся ученые Ю. А. Овчинников, Б. Б. Пиотровский и В. И. Гольданский.

    В нашей стране самой высокой формой поощрения и признания научных заслуг являлась Ленинская премия, учрежденная в 1957 г. До нее была премия им. Ленина, просуществовавшая с 1925 по 1935 г. Лауреатами премии им. Ленина стали А. Н. Бах, Л. А. Чугаев, Н.И.Вавилов, Н.С.Курнаков, А.Е.Ферсман, А.Е.Чичибабин, В.Н.Ипатьев и др. Ленинской премии были удостоены многие выдающиеся ученые: А.Н.Несмеянов, Н.М.Эмануэль, А.И.Опарин, Г.И.Будкер, Р.В.Хохлов, В.П.Чеботаев, В.С.Летохов, А. П. Александров, Ю. А. Овчинников и др. Государственные премии СССР присуждались за исследования, вносившие крупный вклад в развитие науки, и за работы по созданию и внедрению в народное хозяйство наиболее прогрессивных и высокотехнологичных процессов и механизмов. Сейчас в России существуют соответствующие премии Президента и правительства Российской Федерации.

  • Ученых в служении миру и прогрессу объединяют общие принципы познания законов природы и общества, хотя наука XX в. сильно дифференцирована. Крупнейшие достижения человеческого разума обусловлены обменом научной информацией, переносом результатов теоретических и экспериментальных исследований из одной области в другую. От сотрудничества ученых разных стран зависит прогресс не только науки и техники, но и человеческой культуры и цивилизации в целом. Феномен XX в. в том, что число ученых за всю предшествующую историю человечества составляет лишь 0,1 от работающих в науке сейчас, т. е. 90 % ученых - наши современники. И как оценить их достижения? Различные научные центры, общества и академии, многочисленные научные комитеты разных стран и различные международные организации отмечают заслуги ученых, оценивая их личный вклад в развитие науки и значение их научных достижений или открытий. Существует множество критериев для оценки важности научных работ. Конкретные работы оценивают по количеству ссылок на них в работах других авторов или по числу переводов на другие языки мира. При таком методе, который имеет много недостатков, существенную помощь оказывает компьютерная программа по «индексам цитируемости». Но этот или аналогичные методы не позволяют увидеть «леса за отдельными деревьями». Существует система наград - медалей, премий, почетных званий в каждой стране и в мире.

    Среди самых престижных научных наград - премия, учрежденная 29 июня 1900 г. Альфредом Нобелем. По условиям его завещания премии должны присуждаться 1 раз в 5 лет лицам, которые сделали в предшествующем году открытия, внесшие принципиальный вклад в прогресс человечества. Но награждать стали и за работы или открытия последних лет, важность которых была оценена недавно. Первая премия в области физики была присуждена В. Рентгену в 1901 г. за открытие, сделанное 5 лет назад. Первым лауреатом Нобелевской премии за исследования в области химической кинетики стал Я.Вант-Гофф, а в области физиологии и медицины - Э. Беринг, ставший известным как создатель противодифтерийной антитоксичной сыворотки.

    Многие отечественные ученые также были удостоены этой престижной премии. В 1904 г. лауреатом Нобелевской премии по фи-


    Зиологии и медицине стал И. П. Павлов, а в 1908 г. - И. И. Мечников. Среди отечественных Нобелевских лауреатов - академик Н.Н.Семенов (совместно с английским ученым С.Хиншельвудом) за исследования механизма цепных химических реакций (1956); физики И.Е.Тамм, И.М.Франк и П.А.Черенков - за открытие и исследование эффекта сверхсветового электрона (1958). За работы по теории конденсированных сред и жидкого гелия Нобелевская премия по физике была присуждена в 1962 г. академику Л. Д.Ландау. В 1964 г. лауреатами этой премии стали академики Н. Г. Басов и А. М. Прохоров (совместно с американцем Ч. Таунсом) за создание новой области науки - квантовой электроники. В 1978 г. Нобелевским лауреатом стал и академик П. Л. Капица за открытия и основополагающие изобретения в области низких температур. В 2000 г., как бы завершая век присуждения Нобелевских премий, академик Ж.И.Алферов (из Физико-технического института им. А.Ф.Иоффе, Санкт-Петербург, Россия) и Г.Кремер (из Калифорнийского университета, США) стали Нобелевскими лауреатами за разработку полупроводниковых гетерострук-тур, используемых в высокочастотной электронике и оптоэлект-ронике.

    Присуждение Нобелевской премии осуществляет Нобелевский комитет Шведской академии наук. В 60-е годы деятельность этого комитета была подвергнута критике, поскольку многие ученые, достигшие не менее ценных результатов, но работающие в составе больших коллективов или опубликовавшиеся в «непривычном» для членов комитета издании, не стали лауреатами Нобелевской премии. Например, в 1928 г. индийские ученые В. Раман и К. Кришнан исследовали спектральный состав света при прохождении его через различные жидкости и наблюдали новые линии спектра, смещенные в красную и синюю стороны. Несколько раньше и независимо от них аналогичное явление в кристаллах наблюдали советские физики Л.И.Мандельштам и Г.С.Ландсберг, опубликовав свои исследования в печати. Но В. Раман послал короткое сообщение в известный английский журнал, что обеспечило ему известность и Нобелевскую премию в 1930 г. за открытие комбинационного рассеяния света. В течение века исследования становились все более крупными и по количеству участников, поэтому присуждать индивидуальные премии, как это предусматривалось в завещании Нобеля, стало труднее. Кроме того, возникли и развились области знаний, не предусмотренные Нобелем.

    Организовались и новые международные премии. Так, в 1951 г. была учреждена Международная премия А. Галабера, присуждаемая за научные достижения в освоении космоса. Ее лауреатами стали многие советские ученые и космонавты. Среди них - главный теоретик космонавтики академик М. В. Келдыш и первый космонавт Земли Ю.А.Гагарин. Международная академия астронавтики учредила свою премию; ею отмечены работы М. В. Келдыша, О.Г.Газенко, Л.И.Седова, космонавтов А.Г.Николаева и


    В. И. Севастьянова. В 1969 г., например, Шведский банк учредил Нобелевскую премию по экономическим наукам (в 1975 г. ее получил советский математик Л.В.Канторович). Международный математический конгресс стал присуждать молодым ученым (до 40 лет) премию имени Дж. Филдса за достижения в области математики. Этой престижной премии, присуждаемой раз в 4 года, были удостоены молодые советские ученые С. П. Новиков (1970) и Г.А. Маргулис (1978). Многие премии, присуждаемые различными комитетами, приобрели в конце века статус международных. Например, медалью У. Г. Волластона, присуждаемой Лондонским геологическим обществом с 1831 г., были оценены заслуги наших геологов А. П. Карпинского и А. Е. Ферсмана. Кстати, в 1977 г. фонд г. Гамбурга учредил премию А. П. Карпинского, русского и советского геолога, президента Академии наук СССР с 1917 по 1936 г. Эта премия присуждается ежегодно нашим соотечественникам за выдающиеся достижения в области естественных и общественных наук. Лауреатами премии стали выдающиеся ученые Ю. А. Овчинников, Б. Б. Пиотровский и В. И. Гольданский.

    В нашей стране самой высокой формой поощрения и признания научных заслуг являлась Ленинская премия, учрежденная в 1957 г. До нее была премия им. Ленина, просуществовавшая с 1925 по 1935 г. Лауреатами премии им. Ленина стали А. Н. Бах, Л. А. Чугаев, Н.И.Вавилов, Н.С.Курнаков, А.Е.Ферсман, А.Е.Чичибабин, В.Н.Ипатьев и др. Ленинской премии были удостоены многие выдающиеся ученые: А.Н.Несмеянов, Н.М.Эмануэль, А.И.Опарин, Г.И.Будкер, Р.В.Хохлов, В.П.Чеботаев, В.С.Летохов, А. П. Александров, Ю. А. Овчинников и др. Государственные премии СССР присуждались за исследования, вносившие крупный вклад в развитие науки, и за работы по созданию и внедрению в народное хозяйство наиболее прогрессивных и высокотехнологичных процессов и механизмов. Сейчас в России существуют соответствующие премии Президента и правительства Российской Федерации.





    error: Контент защищен !!