Реакции по химии органика. Основные типы органических реакций

Нуклеофильной называется реакция, при которой реа­гент атакует субстрат своим нуклеофилом; она обо­значается индексом N (nucleophlle).


В электрофильных реакциях реагент принято называть электрофилом. В органической химии электрофильность реагента ха­рактеризует его способность взаимодействовать с атомом углерода субстрата, несущим полный или частичный отрицательный заряд.

В действительности механизм и результат любой электрофильно-нуклеофильной реакции определяется не только свойст­вами реагента, но и свойствами субстрата, образующихся про­дуктов реакции, растворителя и условиями ее проведения. По­этому разделение электрофильно-нуклеофильных реакций на нуклеофильные и электрофильные только по свойствам реагента носит условный характер. Кроме того, как видно из приведенных схем, в этих реакциях всегда взаимодействуют между собой элек­трофилы и нуклеофилы, содержащиеся в субстрате и реагенте. Во многих реакциях лишь условно один компонент может счи­таться субстратом, а другой – реагентом.

Свободнорадикальные реакции. Гомолитический распад ха­рактерен для неполярной или малополярной связи. Он сопро­вождается образованием свободных радикалов - частиц с неспаренным электроном.

Гомолиз ковалентной связи можно рассматривать как расще­пление этой связи по обменному механизму. Для осуществления гомолиза связи необходима энергия (теплота, свет), достаточная для того, чтобы разорвать эту связь. Наличие неспаренного элек­трона является причиной малой стабильности свободных радика­лов (время жизни в большинстве случаев составляет доли секун­ды) и высокой реакционной способности в свободнорадикальных реакциях. Присутствие в системе свободного радикала (R۰) мо­жет приводить к образованию новых радикалов вследствие его взаимодействия с имеющимися молекулами: R۰ + А – В → R – A + ۰В

Свободнорадикальные реакции сопровождаются взаи­модействием свободных радикалов с молекулами или между собой с образованием новых свободных радикалов (зарождение или развитие цепи) или только молекул (обрыв цепи).

Для свободнорадикальных реакций характерен цепной ме­ханизм, который включает три стадии: зарождение, развитие и обрыв цепи. Эти реакции прекращаются при исчез­новении в системе свободных радикалов. Свободнорадикальные реакции обозначаются индексом R (radical).

Радикальные частицы в зависимости от их сродства к электрону могут и принимать электроны (т. е. быть окислителями), и отдавать электроны (т. е. быть восстановителями). При этом сродство радикала к электрону определяется не только его свойствами, но и свойствами его партнера по реакции. Особенности процессов свободнорадикального окисления-восстановления, протекающих в организме, рассматриваются отдельно при описании свойств определенных классов органических соединений.

В реакциях комплексообразования радикалами могут быть и комплексообразователь, и лиганды. В случае комплексов с переносом заряда радикалообразование может происходить внутри комплекса за счет внутримолекулярного окисления-восстановления между комплексообразователем и лигандом.

Образование радикалов легче всего происходит при гомолизе неполярных простых связей между атомами одного и того же элемента:

С1 2 → С1۰ + ۰С1 НО-ОН → НО۰ + ۰ОН

R-О-О-R" → RO۰ + ۰OR" R-S-S-R" →RS۰ + ۰SR"

При гомолизе малополярной связи С-Н образуются алкильные радикалы, в которых неспаренный электрон находится у атома углерода. Относительная устойчивость этих радикалов зависит от типа замещения атома углерода, несущего неспарен­ный электрон, и растет в ряду: СН 3 < CH 2 R < CHR 2 < CR 3 . Это объясняется положительным индуктивным эффектом алкильных групп, который, повышая электронную плотность на атоме углерода, способствует стабилизации радикала.

Стабильность свободных радикалов существенно возрастает, когда имеется возможность делокализации неспаренного элек­трона за счет π-электронов соседних кратных связей. Это особен­но наглядно наблюдается в аллильном и бензильном радикалах:



аллильный радикал бензильный радикал

В ходе ознакомления с возможными механизмами реакций в молекулах субстрата и реагента следует различать реакцион­ные центры по их характеру: нуклеофильные, электрофилъные и радикальные.

По конечному результату химического превращения простей­шие органические реакции классифицируются на реакции: замещения, присоединения, элиминирования (отщепления) и пе­регруппировки.

Реакции замещения. Под замещением понимают замену ато­ма или группы на другой атом или группу. В реакции замещения всегда образуются два различных продукта. Этот тип реакций обозначается символом S (substitution).

К реакциям замещения относятся: галогенирование и нит­рование алканов, этерификация и алкилирование карбоновых кислот, а также многочисленные ре­акции взаимодействия простых полярных молекул (Н 2 О, NH 3 , НГал) с эфирами, спиртами и галогенпроизводными.

Реакции присоединения. Под присоединением понимают вве­дение атомов или групп в молекулу непредельного соединения, сопровождаемое разрывом π-связей. При этом двойные связи превращаются в ординарные, а тройные связи - в двойные или ординарные. Этот тип реакций обозначается симво­лом A (addition).

Реакции элиминирования (отщепления). Под элиминиро­ванием понимают отщепление атомов или групп от органиче­ской молекулы с образованием кратной связи. Поэтому реакции элиминирования обратны реакциям присоединения. Этот тип ре­акции обозначается символом Е (elimination).

Каждая из органических реакций замещения (S), присоеди­нения (А) или элиминирования (Е) может быть электрофильной (Е), нуклеофильной (N) или радикальной (R). Таким образом, в органической химии выделяют девять типовых реакций, обо­значаемых символами S, А или Е с индексами R, N или Е:

Приведенные типы органических реакций следует считать модельными, так как они не всегда реализуются в чистом виде. Так, например, замещение и элиминирование могут протекать одновременно:


При дальнейшем знакомстве с конкретными классами орга­нических соединений нами будут рассматриваться следующие их химические свойства: кислотно-основные, комплексообразующие, окислительно-восстановительные, электрофильно-нуклеофильные, а также способность к свободнорадикальному взаимо­действию. Особое внимание будет уделено особенностям проте­кания рассматриваемых реакций в биологических системах.

Типы реакций, характерные для различных классов углеводородов, механизм их протекания и биологическое значение процессов представлены в таблице 10.



Многие реакции замещения открывают путь к получению разнообразных соединений, имеющих хозяйственное применение. Огромная роль в химической науке и промышленности отводится электрофильному и нуклеофильному замещению. В органическом синтезе эти процессы имеют ряд особенностей, на которые следует обратить внимание.

Разнообразие химических явлений. Реакции замещения

Химические изменения, связанные с превращениями веществ, отличаются целым рядом особенностей. Разными могут быть конечные результаты, тепловые эффекты; одни процессы идут до конца, в других наступает Изменение веществ часто сопровождается повышением или понижением степени окисления. При классификации химических явлений по их конечному результату обращают внимание на качественные и количественные отличия реагентов от продуктов. По этим признакам можно выделить 7 типов химических превращений, в том числе замещение, идущее по схеме: А—В + С А—С + В. Упрощенная запись целого класса химических явлений дает представление о том, что среди исходных веществ есть так называемая «атакующая» частица, замещающая в реагенте атом, ион, функциональную группу. Реакция замещения характерна для предельных и

Реакции замещения могут происходить в виде двойного обмена: А—В + С—Е А—С + В—Е. Один из подвидов — вытеснение, например, меди железом из раствора медного купороса: CuSO 4 + Fe = FeSO 4 + Cu. В качестве «атакующей» частицы могут выступать атомы, ионы или функциональные группы

Замещение гомолитическое (радикальное, SR)

При радикальном механизме разрыва ковалентных связей электронная пара, общая для разных элементов, пропорционально распределяется между «осколками» молекулы. Образуются свободные радикалы. Это неустойчивые частицы, стабилизация которых происходит в результате последующих превращений. Например, при получении этана из метана возникают свободные радикалы, участвующие в реакции замещения: СН 4 СН 3 . + .Н; СН 3 . + .СН 3 → С2Н5; Н. + .Н → Н2. Гомолитический разрыв связи по приведенному механизму замещения носит цепной характер. В метане атомы Н можно последовательно заменять на хлор. Аналогично идет реакция с бромом, но йод неспособен напрямую замещать водород в алканах, фтор слишком энергично с ними реагирует.

Гетеролитический способ разрыва связи

При ионном механизме протекания реакций замещения электроны неравномерно распределяются между вновь возникшими частицами. Связывающая пара электронов отходит полностью к одному из «осколков», чаще всего, к тому партнеру по связи, в сторону которого была смещена отрицательная плотность в полярной молекуле. К реакциям замещения относится реакция образования метилового спирта CH 3 OH. В бромметане CH3Br разрыв молекулы носит гетеролитический характер, заряженные частицы являются стабильными. Метил приобретает положительный заряд, а бром — отрицательный: CH 3 Br → CH 3 + + Br - ; NaOH → Na + + OH - ; CH 3 + + OH - → CH 3 OH; Na + + Br - ↔ NaBr.

Электрофилы и нуклеофилы

Частицы, которые испытывают нехватку электронов и могут их принять, получили название «электрофилы». К ним относятся атомы углерода, соединенные с галогенами в галогеналканах. Нуклеофилы обладают повышенной электронной плотностью, они «жертвуют» пару электронов при создании ковалентной связи. В реакциях замещения богатые отрицательными зарядами нуклеофилы подвергаются атаке электрофилов, испытывающих нехватку электронов. Это явление связано с перемещением атома или другой частицы — уходящей группы. Другая разновидность реакций замещения — атака электрофила нуклеофилом. Подчас трудно разграничить два процесса, отнести замещение к тому или другому типу, поскольку сложно точно указать, какая из молекул — субстрат, а какая — реагент. Обычно в таких случаях учитываются следующие факторы:

  • природа уходящей группы;
  • реакционная способность нуклеофила;
  • природа растворителя;
  • структура алкильной части.

Замещение нуклеофильное (SN)

В процессе взаимодействия в органической молекуле наблюдается усиление поляризации. В уравнениях частичный положительный или отрицательный заряд отмечают буквой греческого алфавита. Поляризация связи позволяет судить о характере ее разрыва и дальнейшем поведении «осколков» молекулы. Например, атом углерода в йодметане обладает частичным положительным зарядом, является электрофильным центром. Он притягивает ту часть диполя воды, где расположен кислород, обладающий избытком электронов. При взаимодействии электрофила с нуклеофильным реагентом образуется метанол: CH 3 I + H 2 O → CH 3 OH + HI. Реакции нуклеофильного замещения проходят при участии отрицательно заряженного иона либо молекулы, обладающей свободной электронной парой, не участвующей в создании химической связи. Активное участие йодметана в SN 2 -реакциях объясняется его открытостью для нуклеофильной атаки и подвижностью йода.

Замещение электрофильное (SE)

В органической молекуле может присутствовать нуклеофильный центр, для которого характерен избыток электронной плотности. Он вступает в реакцию с испытывающим недостаток отрицательных зарядов электрофильным реагентом. К таким частицам относятся атомы, имеющие свободные орбитали, молекулы с участками пониженной электронной плотности. В углерод, обладающий зарядом «-», взаимодействует с положительной частью диполя воды — с водородом: CH 3 Na + H 2 O → CH 4 + NaOH. Продукт этой реакции электрофильного замещения — метан. При гетеролитических реакциях взаимодействуют противоположно заряженные центры органических молекул, что придает им сходство с ионами в химии неорганических веществ. Не следует упускать из виду, что превращение органических соединений редко сопровождается образованием настоящих катионов и анионов.

Мономолекулярные и бимолекулярные реакции

Нуклеофильное замещение бывает мономолекулярным (SN1). По такому механизму протекает гидролиз важного продукта органического синтеза — третичного бутилхлорида. Первая стадия проходит медленно, она связана с постепенной диссоциацией на катион карбония и хлорид-анион. Второй этап идет быстрее, протекает реакция иона карбония с водой. замещения галогена в алкане на оксигруппу и получение первичного спирта: (CH 3) 3 C—Cl → (CH 3) 3 C + + Cl - ; (CH 3) 3 C + + H 2 O → (CH 3) 3 C—OH + H + . Для одностадийного гидролиза первичных и вторичных алкилгалогенидов характерно одновременное разрушение связи углерода с галогеном и образование пары С—ОН. Это механизм нуклеофильного бимолекулярного замещения (SN2).

Механизм гетеролитического замещения

Механизм замещения связан с переносом электрона, созданием промежуточных комплексов. Реакция идет тем быстрее, чем легче возникают характерные для нее промежуточные продукты. Нередко процесс идет одновременно в нескольких направлениях. Преимущество обычно получает тот путь, в котором используются частицы, требующие наименьших энергетических затрат для своего образования. К примеру, наличие двойной связи увеличивает вероятность появления аллильного катиона СН2=СН—СН 2 + , по сравнению с ионом СН 3 + . Причина кроется в электронной плотности кратной связи, которая влияет на делокализацию положительного заряда, рассредоточенного по всей молекуле.

Реакции замещения бензола

Группа для которых характерно электрофильное замещение, — арены. Бензольное кольцо — удобный объект для электрофильной атаки. Процесс начинается с поляризации связи во втором реагенте, в результате чего образуется электрофил, примыкающий к электронному облаку бензольного кольца. В результате появляется переходный комплекс. Полноценной связи электрофильной частицы с одним из атомов углерода пока еще нет, она притягивается ко всему отрицательному заряду «ароматической шестерки» электронов. На третьей стадии процесса электрофил и один углеродный атом кольца связывает общая пара электронов (ковалентная связь). Но в таком случае происходит разрушение «ароматической шестерки», что невыгодно с точки зрения достижения стабильного устойчивого энергетического состояния. Наблюдается явление, которое можно назвать «выбросом протона». Происходит отщепление Н + , восстанавливается устойчивая система связи, характерная для аренов. Побочное вещество содержит катион водорода из бензольного кольца и анион из состава второго реагента.

Примеры реакций замещения из органической химии

Для алканов особенно характерна реакция замещения. Примеры электрофильных и нуклеофильных превращений можно привести для циклоалканов и аренов. Подобные реакции в молекулах органических веществ идут при обычных условиях, но чаще — при нагревании и в присутствии катализаторов. К распространенным и хорошо изученным процессам относится электрофильное замещение в ароматическом ядре. Важнейшие реакции этого типа:

  1. Нитрование бензола в присутствии H 2 SO 4 — идет по схеме: C 6 H 6 → C 6 H 5 —NO 2 .
  2. Каталитическое галогенирование бензола, в частности хлорирование, по уравнению: C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.
  3. Ароматическое протекает с «дымящей» серной кислотой, образуются бензолсульфокислоты.
  4. Алкилирование — замена атома водорода из состава бензольного кольца на алкил.
  5. Ацилирование — образование кетонов.
  6. Формилирование — замена водорода на группу СНО и образование альдегидов.

К реакциям замещения относится реакция в алканах и циклоалканах, в которой галогены атакуют доступную связь С—Н. Получение производных может быть связано с замещением одного, двух или всех атомов водорода в предельных углеводородах и циклопарафинах. Многие из галогеноалканов с небольшой молекулярной массой находят применение в производстве более сложных веществ, относящихся к разным классам. Успехи, достигнутые в изучении механизмов реакций замещения, дали мощный толчок для развития синтезов на основе алканов, циклопарафинов, аренов и галогенопроизводных углеводородов.

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

Теория замещения в ароматических соединениях. Реакции электрофильного замещения. Ориентанты 2 рода (мета- ориентанты).

Заместители, обладающие отрицательным индуктивным эффектом или отрицательными как индуктивным, так и мезомерным эффектами, направляют электрофильное замещение в мета-положение бензольного кольца и носят название ориентантов второго рода.

Органические реакции, как и неорганические, подразделяются на 3 основных типа:

1) реакция замещения: СН 4 + CI 2 → СН 3 CI + НCI;

2) реакция отщепления: СН 3 СН 2 Br → СН 2 = СН 2 + НBr;

3) реакция присоединения: СН 2 = СН 2 + НBr → CН 3 СН 2 Br.( реакции полимеризации)

Классифицировать по механизму разрыва ковалентных связей в реагирующих молекулах.

Два способа разрыва ковалентных связей.

1. Если общая электронная пара делится между атомами, образуя радикалы. Радикалы -частицы, имеющие неспаренные электроны. Такой разрыв связи называется радикальным (гомолитическим). Особенность данной связи заключается в том, что радикалы, которые образуются, взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом.

Образующиеся радикалы взаимодействуют с имеющимися в реакционной системе молекулами или друг с другом: CН· 3 + CI 2 → СН 3 CI + CI.

По радикальному механизму протекают реакции, в которых разрыву подвергаются связи малой полярности (С-С, С-Н, N-N) при высокой температуре, под действием света или радиоактивного излучения.

2. Если при разрыве связи общая электронная пара остается у одного атома, то образуются ионы – катион и анион. Такой механизм называется ионным или гетеролитическим. Он приводит к образованию органических катионов или анионов: 1) хлористый метил образует метил-катион и хлорид-анион; 2) метил-литий образует литий-катион и метил-анион.

Органические ионы вступают в дальнейшие превращения. При этом катионы взаимодействуют с нуклеофильными («любящими ядра») частицами, а органические анионы – с электрофильными («любящими электроны») частицами (катионы металлов, галогены и др.).

Ионный механизм наблюдается при разрыве полярной ковалентной связи (углерод – галоген, углерод – кислород и др.).

Органические ионные частицы подобны ионам в неорганической химии – имеют соответствующие заряды. Однако они и резко отличаются: ионы неорганических соединений присутствуют в водных растворах постоянно, а органические ионные частицы возникают только в момент реакции.

Поэтому во многих случаях необходимо говорить не о свободных органических ионах, а о сильно поляризованных молекулах.

Радикальный механизм наблюдается при разрыве неполярной или малополярной ковалентной связи (углерод – углерод, углерод – водород и т. д.).

Органические ионные частицы подобны ионам в неорганической химии – они имеют соответствующие заряды.





error: Контент защищен !!