Ядерные мифы и атомная реальность. «Царь-бомба» и другие знаменитые ядерные взрывы Сила удара ядерной бомбы

Глава 3. Оценка поражающего действия ядерного взрыва

3.1. Характеристика поражающего действия ядерного взрыва

По масштабам и характеру поражающего действия ядерные взрывы существенным образом отличаются от взрывов обычных боеприпасов. Одновременное воздействие ударной волны, светового излучения и проникающей радиации в значительной мере обусловливает комбинированный характер поражающего действия взрыва ядерного боеприпаса на людей, вооружение, военную технику и сооружения.

При комбинированном поражении личного состава травмы и контузии от воздействия ударной волны могут сочетаться с ожогами от светового излучения, лучевой болезнью от воздействия проникающей радиации и радиоактивного заражения. Некоторые виды вооружения и военной техники, сооружений и имущества войск будут разрушаться (повреждаться) ударной волной с одновременным возгоранием от светового излучения. Радиоэлектронная аппаратура и приборы, кроме того, могут потерять работоспособность в результате воздействия электромагнитного импульса и ионизирующих излучений ядерного взрыва, что наиболее характерно для взрыва нейтронного боеприпаса.

Комбинированное поражение является наиболее тяжелым для человека. Так, лучевая болезнь затрудняет лечение травм и ожогов, которые в свою очередь осложняют течение лучевой болезни. Кроме того, при этом снижается сопротивляемость организма человека к инфекционным заболеваниям.

Поражения личного состава по их тяжести принято делить на смертельные, крайне тяжелые, средней тяжести и легкие. Крайне тяжелые и средней тяжести поражения представляют опасность для жизни и зачастую сопровождаются смертельным исходом. Поражения средней тяжести и легкие, как правило, опасности для жизни не представляют, но приводят к временной потере боеспособности личного состава.

Выход из строя личного состава от воздействия ударной волны и светового излучения определяется легкими, а от воздействия проникающей радиации - средними поражениями, требующими лечения в медицинских учреждениях.

Под воздействием поражающих факторов ядерного взрыва личный состав может терять боеспособность (работоспособность) немедленно, т.е. по истечении нескольких минут после взрыва, либо через более продолжительное время. Под воздействием ударной волны или светового излучения поражение личного состава происходит, как правило, немедленно. Степень поражения человека проникающей радиацией и время, в течение которого проявляются характерные симптомы лучевой болезни, а соответственно и выход личного состава из строя зависят от поглощенной дозы излучения. Это время может составлять от нескольких дней до месяца.

Потери личного состава от воздействия поражающих факторов ядерного взрыва в зависимости от степени поражения принято делить на безвозвратные и санитарные. К безвозвратным потерям относят погибших до оказания медицинской помощи; к санитарным - пораженных, утративших боеспособность не менее чем на одни сутки и поступивших в медицинские пункты или лечебные учреждения.

Выход из строя вооружения и военной техники происходит главным образом под действием ударной волны и обусловливается для самолетов и вертолетов слабыми повреждениями, для остальной техники - средними повреждениями.

Повреждение вооружения и военной техники происходит при непосредственном воздействии на них избыточного давления и вследствие метательного действия ударной волны, в результате чего объект отбрасывается скоростным напором и ударяется о землю.

Принято различать четыре степени повреждения вооружения и военной техники: слабые, средние и сильные повреждения и полное разрушение.

К слабым повреждениям вооружения и военной техники относятся такие, которые существенно не снижают боеспособности образца и могут быть устранены силами расчета (экипажа).

Средними считаются повреждения вооружения и военной техники, требующие ремонта в воинских ремонтных частях и подразделениях.

При сильных повреждениях объект либо полностью становится непригодным к использованию, либо может быть возвращен в строй после капитального ремонта.

В случае полного разрушения объекта его восстановление невозможно или практически нецелесообразно.

Фортификационные сооружения разрушаются в основном ударной волной, а при отсутствии одежды крутостей- и от воздействия сейсмовзрывных волн в грунте. Различают три степени разрушения фортификационных сооружений: слабую, среднюю и полную.

При слабом разрушении сооружение пригодно для боевого использования, но требует в дальнейшем ремонта.

В случае среднего разрушения пригодность сооружения для использования по прямому назначению ограничена и оно считается выведенным из строя.

При полном разрушении использование сооружения по прямому назначению и его восстановление становятся практически невозможными.

В населенных пунктах и лесах при ядерных взрывах могут возникать зоны завалов и пожаров. Высота сплошных завалов может достигать 3-4 м. В зоне полного разрушения леса (давление более 0,5 кгс/см 2) деревья, как правило, вырваны с корнем, сломаны и отброшены. В зоне сплошных завалов (давление 0,3-0,5 кгс/см 2) разрушается до 60% деревьев, в зоне частичных завалов (давление 0,1-0,3 кгс/см 2) -до 30%.

3.2. Координатный закон поражения

Поражение цели, а также наносимый ей ущерб при взрыве ядерного боеприпаса носят случайный характер и обусловлены совокупностью следующих факторов:

  • значениями координат цели относительно центра (эпицентра) взрыва;
  • эффективностью поражающего действия боеприпаса;
  • степенью накрытия цели поражающими факторами;
  • уязвимостью цели;
  • различием в расположении и ориентации объектов на местности относительно центра (эпицентра) взрыва.

При установлении закономерности вероятности выхода из строя личного состава при одновременном воздействии нескольких поражающих факторов (комбинированное поражение) учитывается, что взаимное отягощение различных видов поражения проявляется, как правило, не сразу после их получения, а лишь в период лечения.

В таком случае вероятность V выхода из строя личного состава при комбинированных поражениях рассматривается как результат воздействия на человека независимых событий (поражающих факторов) и вычисляется по соотношению

где V ув, V си, V пр - вероятность выхода из строя от воздействия соответственно ударной волны, светового излучения и проникающей радиации.

Поскольку воздействие отдельных поражающих факторов на цель носит случайный характер, результат действия взрыва в целом также будет случайным, поэтому полной характеристикой поражающего действия взрыва ядерного боеприпаса является координатный закон поражения объектов.

Координатный закон поражения представляет собой зависимость вероятности поражения объекта не ниже заданной степени тяжести от его положения (координат) относительно центра (эпицентра) взрыва ядерного боеприпаса. Для каждой мощности и вида ядерного взрыва существует определенная закономерность изменения вероятности определенной степени поражения (разрушения) данного объекта в зависимости от расстояния.

Вследствие симметричности воздействия поражающих факторов взрыва относительно его центра (эпицентра) на среднепересеченной местности координатный закон поражения будет круговым (рис. 3.1). Начало координат совмещено с центром (эпицентром) взрыва, на оси абсцисс указывается расстояние R от центра (эпицентра) взрыва, а на оси ординат - вероятность V(R) поражения определенного элемента цели с заданной степенью тяжести.

При рассмотрении координатного закона поражения можно выделить три зоны (области), расположенные вокруг центра (эпицентра) взрыва. В зоне радиусом R g> непосредственно примыкающей к центру (эпицентру) взрыва, вероятность поражения цели постоянна и равна 1; эту зону принято называть зоной безусловного (достоверного) поражения. За ней следует зона с радиусом R a , в пределах которой вероятность поражения уменьшается от 1 до О по мере увеличения расстояния от центра (эпицентра) взрыва; эту зону называют зоной вероятного поражения.

Затем располагается зона (R б >R а ), в пределах которой не будут наблюдаться поражения средней тяжести. Начиная с расстояния R>R б будут отсутствовать и легкие поражения; эту область принято называть зоной полной безопасности,

Рис. 3.1. Графическое изображение кругового координатного закона поражения:

а - поражение не ниже средней степени тяжести; б - поражение не ниже легкой степени тяжести

Непосредственное использование координатного закона при расчетах возможных потерь в районе ядерного взрыва представляет определенные трудности из-за сложности вычислений. Для практических расчетов вид координатного закона поражения можно упростить, искусственно расширив зону достоверных поражений за счет зоны вероятных поражений. Полученную расширенную зону достоверных поражений средней тяжести называют приведенной зоной поражения, в пределах которой при взрыве боеприпаса цель поражается с заданной вероятностью. Размер этой зоны можно характеризовать радиусом R п (км), называемым в дальнейшем для сокращения радиусом зоны поражения. При таком подходе координатный закон поражения заменяется простым одноступенчатым законом вероятности поражения цели V(R) от расстояния до цели R в момент взрыва ядерного боеприпаса (рис. 3.2).

Для всех точек приведенной зоны поражения в соответствии с ее определением вероятность поражения рассматриваемого элемента цели со степенью тяжести не ниже заданной равна 1, а вне этой зоны (R>R п) -0.

Рис. 3.2. Графическое изображение одноступенчатого закона вероятности поражения цели

На границе приведенной зоны поражения R= R п вероятность поражения рассматриваемой элементарной цели составляет 0,5. Приведенная зона поражения S п (км 2) имеет вид круга:

Использование на практике кругового одноступенчатого закона вероятности поражения цели позволяет с приемлемой для ручных расчетов точностью оценивать эффективность ядерных ударов.

3.3. Классификация объектов поражения

Эффективность ядерного удара при поражении объекта обусловливают следующие факторы:

  • вид, размер и подвижность объекта;
  • устойчивость элементарных целей объекта к воздействию поражающих факторов;
  • мощность, вид и количество взрывов;
  • рельеф местности и метеорологические условия в момент удара и др.

В общем случае объект поражения представляет собой совокупность элементарных целей, расположенных на ограниченной площади. Под элементарной целью понимают такую одиночную цель, которую нельзя разделить на другие цели или расчленить на части без нарушения ее физической целости, например, танк, бронетранспортер.

По характеру элементарных целей, входящих в состав объектов, последние делятся на однородные и неоднородные. Однородным называется объект, содержащий один вид элементарных целей. Если объект содержит элементарные цели разного характера (например, живую силу, танки, артиллерийские орудия), то он называется неоднородным. Для однородного объекта число его пораженных элементарных целей, расположенных равномерно, прямо пропорционально площади объекта, накрытой зонами поражения ядерных взрывов.

Устойчивость объекта существенно зависит также от его размера и конфигурации. По размерам объекты можно разделить на точечные и размерные.

К точечным объектам относятся такие, поражение которых не может быть частичным: они либо поражаются полностью при взрыве ядерного боеприпаса, либо вообще не поражаются (например, пусковая установка на стартовой позиции).

Размерные объекты могут быть площадными или линейными. У площадных объектов отношение линейных размеров фронта и глубины не превышает 2:1. У линейных объектов это отношение больше 2. В отличие от точечных размерные объекты могут поражаться при ядерном взрыве и частично, т.е. поражение может быть нанесено лишь доле элементарных целей, расположенных в пределах занимаемой данным объектом площади. Следует иметь в виду, что такая классификация целей относительна: в зависимости от мощности взрыва одна и та же цель может быть в одном случае точечной, а в другом - размерной.

Площадные объекты могут быть условно представлены в виде круговых. В качестве размерной характеристики кругового объекта принимается площадь S Ц (км 2) или радиус R ц (км) круга, равновеликого площади объекта. Площадь цели определяется как произведение ее размеров по фронту и в глубину. Тогда

При оценке потерь, нанесенных линейному объекту, в качестве основной размерной характеристики принимается его длина L ц.

Практически любой размерный объект является неоднородным как с точки зрения устойчивости его отдельных элементов к воздействию поражающих факторов ядерного взрыва, так и с точки зрения степени важности этих элементов для нормального функционирования объекта в целом.

3.4. Оценка потерь в районе ядерного взрыва

Данные о потерях войск в районе ядерного взрыва могут быть получены либо из донесений командиров подразделений, подвергшихся ядерному удару, либо определены расчетным путем - методом прогнозирования. В последнем случае оценка эффективности поражающего действия ядерного взрыва на различные объекты может производиться с использованием значений радиусов зон поражения. При этом считают, что в пределах зон поражения отдельные элементы объекта получают разрушения (поражения) такой степени, что утрачивают боеспособность или не могут быть использованы по своему прямому назначению.

Исходными данными для прогнозирования потерь личного состава, вооружения и военной техники являются время, координаты, вид и мощность ядерного взрыва, положение войск, их защищенность и условия боевой деятельности.

Эффективность поражения объекта определяется совокупностью характеристик поражения и оценивается нанесенным ущербом. В зависимости от типа объектов для оценки эффективности поражения могут использоваться различные критерии боевой эффективности. Показателем эффективности поражения одиночных точечных объектов служит вероятность поражения. Показателем эффективности поражения площадного объекта является математическое ожидание относительного числа (или процента) пораженных элементарных целей или надежно поражаемая часть площади объекта.

На практике эффективность ядерного удара противника по объектам можно оценивать абсолютным или относительным числом пораженных элементов (площади) объекта S п. В последнем случае ущерб М п (%), наносимый объекту, может быть вычислен как отношение количества пораженных элементов m п (площади зоны поражения S П) к общему их числу на объекте поражения m ц (площади объекта S Ц) по соотношению

Для определения ущерба (потерь) необходимо знать значения радиусов зон поражения (выхода из строя) личного состава, вооружения и военной техники R п для данной мощности и вида взрыва, площадь или длину объекта, по которому нанесен ядерный удар, а также количество личного состава N л.с, вооружения и военной техники N т на объекте и степень их защищенности. Кроме того, необходимо иметь сведения о характере распределения элементарных целей на площади объекта. Зачастую такая информация будет отсутствовать, и поэтому условно принимают, что все элементы распределены равномерно на площади объекта, по которому нанесен ядерный удар.

Площадь цели, оказавшаяся в зоне поражения от взрыва ядерного боеприпаса определенной мощности, зависит от взаимного расположения центра (эпицентра) взрыва и центра площади поражаемого объекта.

Возможные варианты такого взаимного расположения показаны на рис. 3.3, где:

Рис. 3.3. Расположение зон поражения относительно площади объекта (вариант)

а - вся площадь зоны поражения S п (км 2) расположена в пределах площади объекта; вычисляется по формуле (3.1);

б - больше половины площади зоны поражения находится в пределах площади объекта; поражаемая часть площади объекта определяется площадью круга радиусом R п за вычетом площади сегмента;

в - половина площади зоны поражения расположена за пределами площади объекта, и в этом случае

г - больше половины площади зоны поражения расположено за пределами площади объекта; при этом поражаемая часть площади объекта равна площади сегмента.

При оценке абсолютных потерь личного состава П чел или вооружения и военной техники П ед, находившихся в момент ядерного взрыва на размерном объекте, следует определить площадь объекта, накрытую зоной поражения S п, и умножить найденное значение на количество личного состава или вооружения и военной техники:

Воинские подразделения при передвижениях в колоннах относятся к линейным объектам. В этом случае расчет ущерба М п (%), нанесенного им ядерным взрывом, производится по соотношению

где L п - длина пораженной взрывом части колонны, км;

L ц - общая длина колонны войск, км. Длина пораженной части колонны зависит от радиуса зоны поражения (мощности и вида взрыва) отдельных элементов колонны и взаимного положения центра (эпицентра) взрыва и колонны.

Рис. 3.4. Расположение центров (эпицентров) ядерных взрывов относительно поражаемых колонн войск (вариант)

На рис. 3.4 показаны возможные положения центров (эпицентров) взрывов относительно поражаемых колонн войск (линейных объектов). Абсолютные потери личного состава, вооружения и военной техники на линейном объекте при положениях а, б, в, изображенных на рисунке, могут быть оценены соотношениями:

Ориентировочные значения радиусов зон выхода из строя личного состава в зависимости от условий его размещения при низких воздушных (В) и наземных (Н) ядерных взрывах представлены в табл. 3.1. При оценке

Таблица 3.1

Радиусы зон выхода из строя личного состава в результате комбинированных поражений, км

Расположение личного состава Вид взрыва Мощность взрыва, тыс. т
1 10 20 50 100
Открыто на местности и в автомобилях Н 0,9 1,3 1,7 2,3 3
В 0,9 1,9 2,4 3,2 4,6
В БТР закрытого типа Н 0,85 1,3 1,45 1,7 1,9
В 0,85 1.3 1,45 1,7 1,9
В танках Н 0,7 1 1,2 1,3 1,4
В 0,8 1 1,2 1,3 1,4
В открытых щелях, окопах Н 0,65 1 1,2 1,5 2
В 0,6 1.2 1,5 2 2,7
В перекрытых щелях Н 0,45 0,8 1 1,2 1,5
В 0,45 0,8 1 1,1 1,4
В блиндажах Н 0,25 0,5 0,6 0,8 1
В 0,2 0,4 0,5 0,6 0,8
В убежищах легкого типа Н 0,2 0,4 0,5 0,7 0,8
В 0,1 0,3 0,4 0,5 0,6

Примечание. Под радиусом зоны выхода из строя личного состава следует понимать радиус окружности, на границе которой вероятность комбинированных поражений средней тяжести составляет не менее 50% возможных потерь вооружения и военной техники и разрушений инженерных сооружений можно воспользоваться данными, приведенными в табл. 3.2.

Таблица 3.2

Радиусы зон средних повреждений вооружения и военной техники и разрушений инженерных сооружений, км

Наименование техники и сооружений Вид взрыва Мощность взрыва, тыс. т
1 10 20 50 100
Танки Н 0,15 0,3 0,4 0,6 0,7
В 0,2 0,4 0,55 0,8 1
Грузовые автомобили Н 0,4 0,9 1,1 1,4 2
В 0,5 1,1 1,4 1,9 2,4
Артиллерийские орудия Н 0,2 0,5 0,7 0,9 1,1
В 0,3 0,6 0,8 1,1 1,4
Оперативно - тактические ракеты Н 0,5 1 1,3 1,8 2,2
В 0,5 1,1 1,45 2 2,4
Реактивные самолеты Н 0,9 1,9 2,3 3,2 4
В 1 2,1 2,6 3,7 4,5
Траншея Н 0,3 0,5 0,7 0,9 1,1
В 0,2 0,4 0,5 0,7 0,9
Блиндажи Н 0,2 0,45 0,6 0,8 1
В 0,15 0,3 0,4 0,6 0,8
Убежища легкого типа Н 0,15 0,35 0,5 0,65 0,8
В 0,1 0,25 0,35 0,45 0,6
Автодорожные и железнодорожные мосты (фермы сквозные) Н 0,25 0,5 0,7 1 1,3
В 0,35 0,85 1,3 1,5 1,9
Деревянные мосты Н 0,35 0,6 0,8 1,1 1,5
В 0,5 0,9 1 1,7 2,2

Примечание. Радиусы выхода из строя вооружения и военной техники, расположенных в укрытиях, примерно в 1,5 раза меньше указанных.

Оценка возможных потерь личного состава, вооружения и военной техники производится в такой последовательности:

  1. В зависимости от мощности и вида ядерного взрыва по табл. 3.1 и 3.2 определяются значения радиусов зон выхода из строя различных элементов объекта.
  2. Из центра (эпицентра) ядерного взрыва по значениям радиусов наносят на карту с фактическим положением войск зоны выхода из строя отдельных элементов объекта.
  3. По формуле (3.1) вычисляются значения площадей зон поражения различных элементов объекта.
  4. Абсолютные потери личного состава или вооружения и военной техники на размерном объекте вычисляются по соотношению (3.3) или (3.4), а на линейном объекте - по соотношениям (3.5), (3.6) и (3.7).

О возможных последствиях взрыва ядерной боеголовки над городом снято множество фильмов и очерков, написано немало статей и книг. Только это забывается со временем. Волосы пошевелилиcь во время просмотра/прочтения, а через пару тройку недель память услужливо неприятные вещи задвинула вглубь подкорки, острота восприятия притупилась и "человеки" продолжают жить и радоваться жизни.

Постоянная подпитка напряженности в условиях неспровоцированной, наглой и беспринципной агрессии (благо пока не военной) со стороны США и ее вассалов, приводит к тому, что возможные последствия применения ядерных боеприпасов начинает волновать не только нас, Россиян, но и самих агрессоров. И они начинают припоминать, что же такое НА САМОМ деле реальное применение ядерного оружия, а не его картинки в пропагандисстких роликах и воспоминаниях о Хиросиме и Нагасаки. Особенно применение СОВРЕМЕННОГО ядерного оружия, которое есть у России и которое ДОЛЕТИТ до СШП, несмотря на все их ПРО.

Появление на сайте http://thebulletin.org/ (The Bulletin of the Atomic Scientists - Бюллетень ученых - ядерщиков) статьи "Что произойдет в случае взрыва 800 килотонной боеголовки над мидтаун Манхетеном?" 25 февраля этого года КМК неслучайно. Несмотря на все, в Америке еще осталось достаточно много думающих людей, понимающих сущность происходящего, имеющих трезвый взгляд на последствия оголтелой политики неоконов. Впрочем, может и обратный вариант, что эта статья обрела вторую жизнь под тяжестью кирпичей в памперсах. Впервые данная статья была опубликована на этом же ресурсе в 2004 году.

Сделал перевод достаточно свободный, ибо много путаницы и несостывок у самих авторов в попытке описать процесс разрушений во времени. Впрочем, поехали.

Автор статьи напоминает, что у России имеется ориентировочно 1 000 стратегических ядерных боеголовок, которые смогут достичь территории США менее чем через 30 минут после запуска. Из этой 1 000 боеголовок около 700 имеют мощность 800 килотонн, или 800 000 тонн в тротиловом эквиваленте. Так что же прозойдет в случае взрыва такой боеголовки в серлце Нью-Йорка над мидтаун Манхетеном (любят американцы использовать эпитеты типа сердце и душа применительно к своим городам ).

Напомню, что представляет из себя эта часть Нью-Йорка: часть района Манхетен между 14-й улицей на юге и 59-й улицей и Центральным парком на севере. Фактически - основной деловой и торговый район Нью-Йорка, место нахождения таких американских символов, как Эмпайр-стейт-билдинг (Empire State Building), Рокфеллеровский центр (Rockefeller Center), Фонд Форда (Ford Foundation Building), Крайслер-билдинг (Chrysler Building) и т.д. В этом же районе находится комплекс ООН. Да и Wall Street тоже.

Первичный огненный шар. Боеголовка сдетонирует на высоте около 1 мили (1.6 км) над городом, что максимизирует урон, наносимый ударной волной. Через несколько миллисекунд после взрыва центр боеголовки раскалиться до 100 миллионов градусов Цельсия, что в 5 раз горячее ядра Солнца (Т емпература ядра Солнца 1.5 миллиона по Цельсию, поверхности - 6000 градусов, температура короны - 1 миллион).

Образовавшийся шар сверхгорячего воздуха станет расширяться со скоростью в несколько миллионов километров в час, выполняя роль сверхбыстрого поршня, сжимающего окружающий воздух по периферии огненного шара, и создающего гигантскую ударную волну огромной разрушительной силы.

(КМК автор немного преувиличивает скорость. При скорости движения массы воздуха на уровне Мах1 - 350 м/с - скорость будет около 30,2 тыс. км. в час. Для достижения скорости в 1 млн. км/ч - скорость движения воздуха должна быть 11 574 м/с).

Через секунду после взрыва огненный шар достигнет 1 мили в диаметре, остыв до 16000 грудасов по Фаренгейту (авторы статьи под конец начинает давать уже и в Цельсиях и в километрах ), что примерно на 4000 градусов по Цельсию горячее поверхности Солнца.

В ясный погожий день такие температуры вызовут мгновенные пожары на площади около 100 квадратных миль (более 250 кв. км ).

Огненный шторм . В считанные секунды после взрыва, разразившиеся пожары приведут к поднятию горячего воздуха, засасывая прохладный, богатый кислородом воздух, со всех сторон.

Все очаги воспламенения постепенно объединятся в один гигантский пожар, выброс энергии которого может в 15-50 раз превышать начальный выброс энергии самого взрыва. Огненный шторм будет быстро набирать силу, нагревая огромные массы воздуха, скорость которых может достигать 300 миль (480 км) в час. Благодаря эффекту дымохода, продолжится всасывание прохладного и богатого кислородом воздуха с периферии пожаров, что еще более усилит мощь огня. Сила ветра по краям огненной зоны будет достаточна для выворачивания с корнем деревьев диаметром до метра и засасывания людей в пламя.

Эпицентр взрыва: Мидтаун Манхетен. Огенный шар испарит все строение, находящиеся непосредственно под ним, а его ударная волна сравняет с землей даже прочные бетонные строения в радиусе нескольких миль. Здания, не разрушенные сразу, подвергнуться воздействию ударной волны и сверхвысоких температур, воспламеняющих все, что может гореть.

Менее чем через секунду с момента взрыва, асфальт расплавиться, сгорит вся краска на стенах, оплавит стальные поверхности. Через секунду ударная волна на скорости 750 миль в час разрушит здания, взметнет в воздух машины как листья. По всему мидтауну воспламенятся все внутренности зданий и машин, находящихся в зоне прямой видимости взрыва.

В районах Челси, Мидаутн ист и Ленокс Хилл, а также в ООН, находящихся на расстоянии примерно 1 мили от эпицентра от силы света огненного шара, в 10000 раз более яркого чем полуденное пустынное солнце, загорятся все воспламеняемые предметы.

Художественный музей Метрополитан, находящийся в 2 милях от эпицентра, будет стерт с лица земли вместе со всеми его бесценными историческими сокровищами.

В Ист Виледж, Нижнем Манхетене и Стьюзант Тауне свет огненного шара будет в 2700 раз ярче полуденного солнца в пустыне. Термальная радиация расплавит и покорежит алюминиевые поверхности, воспламенит автомобили и испепелит кожу, еще до прихода ударной волны.

На расстоянии около 3 миль от эпицентра взрыва начнутся пожары в районах (Квинс, Бруклин, Западный Нью-Йорк, Джерси Сити) расположенных вдоль берегов Гудзона и Ист Ривер. Несмотря на влияние водных масс на направление огненных ветров в этом районе, их эффект будет схожим с эффектом сплошного огня, которым будет объят Мидтаун Манхетен. Здесь сила света будет сильнее в 1900 силы полуденного солнца. Одежда на людях в зоне прямой видимости взрыва моментально воспламенится, причиняя ожоги третьей и четвертой степени. Через 12-14 секунд до сюда дойдет взрывная волна, гоня перед собой воздух на скорости от 200 до 300 миль в час. Малоэтажные жилые дома будут разрушены, высотные подвергнуться сильным разрушениям.

Огонь полностью охватит всю территории в радиусе 5 миль от эпицентра взрыва.

На расстоянии 5.35 мили от эпицентра мощность вспышки будет в два раза мощнее удара тепловой энергии в Хиросиме. Тепловое и световое давление в Джерси Сити, Клифсайд парке, Вудсайде в Квинс, в Гарлеме и на Острове губернаторов превысит мощность 600 полуденных солнц.

На этом расстоянии скорость ветра будет достигать 70-100 миль в час (130-160 км/ч). Крепкие здания подвергнуться серьезным структурным разрушениям, все окна и двери, равно как и не несущие стены и перегородки будут снесены. Деревянные (жилые) дома и их внутренности извергнут клубы черного дыма по мере возгорания краски и интерьеров.

На расстоянии от 6 до 7 миль от эпицентра на территории от Моначи в Нью Джерси до Краун Хайтс в Бруклине, от Стадиона Янки в Квинсе до Короны в Квинсе и Краун Хайтс в Бруклине, тепловая сила шара превысит силу 300 полуденных солнц и все, кто окажутся в зоне прямой видимости шара получат ожоги третьей степени. Огненный шторм может поглотить все районы в радиусе 7 миль от эпицентра.

В 9 милях от эпицентра световая сила шара будет превышать силу 100 полуденных солнц, что причинит ожоги второй и третьей степени. Через 36 секунд с момента взрыва сюда доберется взрывная волна, выбивая окна, двери и перегородки внутри зданий..

Выживших не будет. Через 10 минут вся площадь в радиусе 7 миль от эпицентра взрыва в Мидтаун Манхетене будет объята пламенем. Сплошной пожара может охватить от 90 до 152 квадратных миль (230 - 389 кв. км.) и длиться он может как минимум 6 часов. Температуры воздуха в зоне поражения будут достигать 400 - 500 градусов по Фаренгейту (200 - 260 по Цельсию).

По окончании пожара поверхность земли будет настолько горячей, что даже гусеничные транспортные средства смогут проехать по ней лишь по прошествии нескольких дней. Погребенные под обломками и землей несгоревшие воспламеняющиеся материалы могут самовзгораться при извлечении на воздух даже по прошествии нескольких месяцев.

Те, кто пытался убегать по открытой местности и по дорогам будут испепелены огненным штормом. Даже те, кто успел спрятаться в укрепленных подвалах зданий скорее всего задохнуться от дыма и гари или будут запечены заживо, по мере нагрева их убежищ.

Огонь поглотит и уничтожит всю жизнь. На десятки миль от места непосредственных разрушений радиация будет разносится ветром.

Но это уже другая история.

Все больше людей на планете считает, что в США готовится какая-то великая катастрофа. Об этом свидетельствуют широкомасштабные приготовления. Одна из наиболее вероятных причин катастрофы, угрожающих Америке - это извержение в Йеллоустоуне. Именно сейчас появились новые сведения.

В какой-то момент мы узнаем, что прогнозы относительно размера резервуара магмы под этим супервулканом весьма недооценивались. Специалисты из Университета штата Юта только что сообщили, что размер резервуара магмы под Йеллоустоуном в два раза больше, чем считалось ранее. Что интересно, примерно два года назад также было установлено то же самое, таким образом, последние данные показывают, что магмы в четыре раза больше, чем считалось еще десятилетие назад.

Многие люди в США, утверждает, что их правительство понимает, как выглядит на самом деле ситуация в Йеллоустоуне, но скрывает это, чтобы не вызвать паники. Как будто опровергая это, ученые из штата Юта усердно гарантируют, что самая большая угроза - это риск большого землетрясения, а не извержений. Неужели?

Геологические данные указывают на то, что в Национальном парке извержения происходили 2 миллиона лет назад, 1,3 миллиона лет назад, а в последний раз - 630 тысяч лет назад. Все указывает так что супервулкан может начать извержения не сегодня - завтра, а не через 20 тысяч лет, как того хотят американские специалисты Геологического общества США. Однако, моделирование с использованием компьютерных технологий показывает иногда, что следующая катастрофа может случиться в 2075 году.

Точно таких моделей, однако, зависит от сложности и закономерности эффектов и определенных событий. Трудно поверить в то, что США знают, когда именно проснется этот великий вулкан, но, учитывая тот факт, что это одно из самых известных мест в мире, можно подозревать, что за ним внимательно наблюдают. Кажется, здесь вопрос: если были зафиксированы явные доказательства этого извержения, не стоит ли сообщить об этом людям?

Можно не сомневаться в том, какие угрозы и на территории США представляет анархия. Возможно ли, что FEMA готовится к такому сценарию? Конечно же, да. Большинство людей живет, как овцы на пастбище беззаботно поедая траву и не интересуясь ничем, кроме следующего день. Такими легче всего пожертвовать, потому что в противном случае они становятся препятствием.

Если бы произошло извержение в Йеллоустоуне, количества вулканического материала было бы достаточно для покрытия всех США пятнадцатисантиметровым слоем пепла. В атмосферу были бы выброшены тысячи кубических километров различных газов, в основном соединений серы. Может быть, что это мечта для экологов, борющихся с так называемым глобальным потеплением, поскольку, эмитированные в стратосферу вещества затенили бы землю, что приело бы к тому, что Солнце светило бы только через просветы, что, безусловно, понизило бы температуру в мире.

Такой сценарий обозначал бы также трагические изменения на Земле. Период затемнения и выпадающие кислотные дожди вызвали бы угасание многих видов растений и животных, и с большой вероятностью истребление человечества. Ситуация вроде ядерной зимы приведет к тому, что средняя температура на Земле составит -25 градусов по Цельсию. Потом следует ожидать нормализации ситуации, потому что после предыдущих извержений вулкнов также все нормализовалось.

Как можно прочитать в британском издании Focus, правительства других стран осознают угрозы, и, видимо, отправляют в Йеллоустоун лучших специалистов, которые, однако, могут лишь подтвердить или опровергнуть реальность этой угрозы. Человечество не может сделать ничего, чтобы от этого уберечься. Единственные меры предосторожности, которые можно предпринять - создание укрытий и сбор пищи и воды.

Будем надеяться что все это так и останется чистой воды неправильной гипотезой. В противном случае все ядерное оружие мира не доставит тех хлопот что Йеллоустоун.
Для особо упоротых поясню Америка конечно сразу за несколько часов погибнет, но в России надется почти не на что в пределах двух недель завалит все пеплом и будем умирать оооочень медленно

После окончания Второй Мировой войны страны антигитлеровской коалиции стремительными темпами пытались опередить друг друга в разработках более мощной ядерной бомбы.

Первое испытание, проведённое американцами на реальных объектах в Японии, до предела накалило обстановку между СССРи США. Мощные взрывы, прогремевшие в японских городах и практически уничтожившие всё живое в них, заставили Сталина отказаться от множества притязаний на мировой арене. Большинство советских учёных-физиков было в срочном порядке «брошены» на разработку ядерного оружия.

Когда и как появилось ядерное оружие

Годом рождения атомной бомбы можно считать 1896 год. Именно тогда учёный-химик из Франции А. Беккерель открыл, что уран радиоактивен. Цепная реакция урана образует мощную энергию, которая служит основой для страшного взрыва. Вряд ли Беккерель предполагал, что его открытие приведёт к созданию ядерного оружия — самого страшного оружия во всём мире.

Конец 19 — начало 20 века стал переломным моментом в истории изобретения ядерного оружия. Именно в этом временном промежутке учёные различных стран мира смогли открыть следующие законы, лучи и элементы:

  • Альфа, гамма и бета лучи;
  • Было открыто множество изотопов химических элементов, обладающих радиоактивными свойствами;
  • Был открыт закон радиоактивного распада, который определяет временную и количественную зависимость интенсивности радиоактивного распада, зависящую от количества радиоактивных атомов в испытуемом образце;
  • Зародилась ядерная изометрия.

В 1930-х годах впервые смогли расщепить атомное ядро урана с поглощением нейтронов. В это же время были открыты позитроны и нейроны. Всё это дало мощный толчок к разработкам оружия, которое использовало атомную энергию. В 1939 году была запатентована первая в мире конструкция атомной бомбы. Это сделал физик из Франции Фредерик Жолио-Кюри.

В результате дальнейших исследований и разработок в данной сфере, на свет появилась ядерная бомба. Мощность и радиус поражения современных атомных бомб настолько велик, что страна, которая обладает ядерным потенциалом, практически не нуждается в мощной армии, так как одна атомная бомба способна уничтожить целое государство.

Как устроена атомная бомба

Атомная бомба состоит из множества элементов, главными из которых являются:

  • Корпус атомной бомбы;
  • Система автоматики, контролирующая процесс взрыва;
  • Ядерного заряда или боеголовки.

Система автоматики находится в корпусе атомной бомбы, вместе с ядерным зарядом. Конструкция корпуса должна быть достаточно надёжной, чтобы уберечь боеголовку от различных внешних факторов и воздействий. Например, различного механического, температурного или подобного влияния, которое может привести к незапланированному взрыву огромной мощности, способному уничтожить всё вокруг.

В задачу автоматики входит полный контроль над тем, чтобы взрыв произошёл в нужное время, поэтому система состоит из следующих элементов:

  • Устройство, отвечающее за аварийный подрыв;
  • Источник питания системы автоматики;
  • Система датчиков подрыва;
  • Устройство взведения;
  • Устройство предохранения.

Когда проводились первые испытания, ядерные бомбы доставлялись на самолётах, которые успевали покинуть зону поражения. Современные атомные бомбы обладают такой мощностью, что их доставка может осуществляться только с помощью крылатых, баллистических или хотя бы зенитных ракет.

В атомных бомбах применяются различные системы детонирования. Самая простейшая из них – это обычное устройство, которое срабатывает при попадании снаряда в цель.

Одной из основных характеристик ядерных бомб и ракет, является разделение их на калибры, которые бывают трёх типов:

  • Малый, мощность атомных бомб данного калибра эквивалентна нескольким тысячам тонн тротила;
  • Средний (мощность взрыва – несколько десятков тысяч тонн тротила);
  • Крупный, мощность заряда которого измеряется миллионами тонн тротила.

Интересно, что чаще всего мощность всех ядерных бомб измеряется именно в тротиловом эквиваленте, так как для атомного оружие не существует своей шкалы измерения мощности взрыва.

Алгоритмы действия ядерных бомб

Любая атомная бомба действует по принципу использования ядерной энергии, которая выделяется в ходе ядерной реакции. В основе данной процедуры лежит или деление тяжёлых ядер или синтез лёгких. Так как в ходе данной реакции выделяется огромное количество энергии, причём в кратчайшее время, радиус поражения ядерной бомбы очень впечатляет. Из-за этой особенности ядерное оружие относят к классу оружия массового поражения.

В ходе процесса, который запускается при взрыве атомной бомбы, имеются два главных момента:

  • Это непосредственный центр взрыва, где проходит ядерная реакция;
  • Эпицентр взрыва, который находится на месте, где взорвалась бомба.

Ядерная энергия, выделяемая при взрыве атомной бомбы, настолько сильна, что на земле начинаются сейсмические толчки. При этом непосредственные разрушения данные толчки приносят лишь на расстоянии нескольких сотен метров (хотя если учитывать силу взрыва самой бомбы, данные толчки уже ни на что не влияют).

Факторы поражения при ядерном взрыве

Взрыв ядерной бомбы приносит не только ужасные мгновенные разрушения. Последствия данного взрыва ощутят на себе не только люди, попавшие в зону поражения, но и их дети, родившиеся после атомного взрыва. Типы поражения атомным оружием подразделяются на следующие группы:

  • Световое излучение, которое происходит непосредственно при взрыве;
  • Ударная волна, распространяемая бомбой сразу после взрыва;
  • Электромагнитный импульс;
  • Проникающая радиация;
  • Радиоактивное заражение, которое может сохраниться на десятки лет.

Хотя на первый взгляд, световая вспышка несет меньше всего угрозы, на самом деле она образуется в результате высвобождения огромного количества тепловой и световой энергии. Её мощность и сила намного превосходит мощность лучей солнца, поэтому поражение светом и теплом может стать фатальным на расстоянии нескольких километров.

Радиация, которая выделяется при взрыве, тоже очень опасна. Хотя она действует недолго, но успевает заразить всё вокруг, так как её проникающая способность невероятно велика.

Ударная волна при атомном взрыве действует подобно такой же волне при обычных взрывах, только её мощность и радиус поражения намного больше. За несколько секунд она наносит непоправимые повреждения не только людям, но и технике, зданиям и окружающей природе.

Проникающая радиация провоцирует развитие лучевой болезни, а электромагнитный импульс представляет опасность только для техники. Совокупность всех этих факторов, плюс мощность взрыва, делают атомную бомбу самым опасным оружием в мире.

Первые в мире испытания ядерного оружия

Первой страной, разработавшей и испытавшей ядерное оружие, оказались Соединённые Штаты Америки. Именно правительство США выделило огромные денежные дотации на разработку нового перспективного оружия. К концу 1941 года в США были приглашены многие выдающиеся учёные в сфере атомных разработок, которые уже к 1945 году смогли представить опытный образец атомной бомбы, пригодный для испытаний.

Первые в мире испытания атомной бомбы, оснащенной взрывным устройством, были проведены в пустыне на территории штата Нью-Мексико. Бомба под названием «Gadget» была взорвана 16 июля 1945 года. Результат испытаний оказался положительным, хотя военные требовали испытать ядерную бомбу в реальных боевых условиях.

Увидев, что до победы на гитлеровской коалицией остался всего один шаг, и больше такой возможности может не представиться, Пентагон решил нанести ядерный удар по последнему союзнику гитлеровской Германии – Японии. Кроме того, использование ядерной бомбы должно было решить сразу несколько проблем:

  • Избежать ненужного кровопролития, которое неизбежно бы случилось, если бы войска США ступили на территорию императорской Японии;
  • Одним ударом поставить на колени неуступчивых японцев, заставив их пойти на условия, выгодные США;
  • Показать СССР (как возможному сопернику в будущем), что армия США обладает уникальным оружием, способным стереть с лица земли любой город;
  • И, конечно же, на практике убедиться, на что способно ядерное оружие в реальных боевых условиях.

6 августа 1945 года на японский город Хиросима была сброшена первая в мире атомная бомба, которая применялась в военных действиях. Эту бомбу назвали «Малыш», так как её вес составлял 4 тонны. Сброс бомбы был тщательно спланирован, и она попала именно туда, куда и планировалось. Те дома, которые не были разрушены взрывной волной, сгорели, так как упавшие в домах печки спровоцировали пожары, и весь город был объят пламенем.

После яркой вспышки последовала тепловая волна, которая сожгла всё живое в радиусе 4 километров, а последовавшая за ней ударная волна разрушила большую часть зданий.

Те, кто попал под тепловой удар в радиусе 800 метров, были сожжены заживо. Взрывной волной у многих сорвало обгоревшую кожу. Через пару минут прошёл странный чёрный дождь, который состоял из пара и пепла. У тех, кто попал под чёрный дождь, кожа получила неизлечимые ожоги.

Те немногие, которым посчастливилось уцелеть, заболели лучевой болезнью, которая в то время была не только не изучена, но и полностью неизвестна. У людей началась лихорадка, рвота, тошнота и приступы слабости.

9 августа 1945 года на город Нагасаки была сброшена вторая американская бомба, которая называлась «Толстяк». Данная бомба имела примерно такую же мощность, как и первая, а последствия её взрыва были столь же разрушительные, хотя людей погибло в два раза меньше.

Две атомные бомбы, сброшенные на японские города, оказались первым и единственным в мире случаями применения атомного оружия. Более 300 000 человек погибли в первые дни после бомбардировки. Ещё около 150 тысяч погибли от лучевой болезни.

После ядерной бомбардировки японских городов, Сталин получил настоящий шок. Ему стало ясно, что вопрос разработки ядерного оружия в советской России – это вопрос безопасности всей страны. Уже 20 августа 1945 года начал работать специальный комитет по вопросам атомной энергии, который был в срочном порядке создан И. Сталиным.

Хотя исследования по ядерной физике проводились группой энтузиастов ещё в царской России, в советское время ей не уделяли должного внимания. В 1938 году все исследования в этой области были полностью прекращены, а многие учёные-ядерщики репрессированы, как враги народа. После ядерных взрывов в Японии советская власть резко начала восстанавливать ядерную отрасль в стране.

Имеются данные, что разработка ядерного оружия велась в гитлеровской Германии, и именно немецкие учёные доработали «сырую» американскую атомную бомбу, поэтому правительство США вывезло из Германии всех специалистов-атомщиков и все документы, связанные с разработкой ядерного оружия.

Советская разведывательная школа, которая за время войны смогла обойти все зарубежные разведки, ещё в 1943 году передавала в СССР секретные документы, связанные с разработкой ядерного оружия. В то же время были внедрены советские агенты во все серьёзные американские центры ядерных исследований.

В результате всех этих мер, уже в 1946 году было готово техническое задание по изготовлению двух ядерных бомб советского производства:

  • РДС-1 (с плутониевым зарядом);
  • РДС-2 (с двумя частями уранового заряда).

Аббревиатура «РДС» расшифровывалась как «Россия делает сама», что практически полностью соответствовало действительности.

Новости о том, что СССР готов выпустить своё ядерное оружие, заставило правительство США пойти на радикальные меры. В 1949 году был разработан план «Троян», согласно которому на 70 крупнейших городов СССР планировалось сбросить атомные бомбы. Лишь опасения ответного удара помешали этому плану осуществиться.

Данные тревожные сведения, поступающие от советских разведчиков, заставили учёных работать в авральном режиме. Уже в августе 1949 года состоялись испытания первой атомной бомбы, произведённой в СССР. Когда США узнала про эти испытания, план «Троян» был отложен на неопределённое время. Началась эпоха противостояния двух сверх держав, известная в истории как «Холодная война».

Самая мощная ядерная бомба в мире, известная под именем «Царь-бомбы» принадлежит именно периоду «Холодной войны». Учёные СССР создали самую мощную бомбу в истории человечества. Её мощность составляла 60 мегатонн, хотя планировалось создать бомбу в 100 килотонн мощности. Испытания данной бомбы прошли в октябре 1961 года. Диаметр огненного шара при взрыве составил 10 километров, а взрывная волна облетела земной шар три раза. Именно это испытание заставило большинство стран мира подписать договор о прекращении ядерных испытаний не только в атмосфере земли, но даже в космосе.

Хотя атомное оружие является превосходным средством устрашения агрессивных стран, с другой стороны оно способно гасить любые военные конфликты в зародыше, так как при атомном взрыве могут быть уничтожены все стороны конфликта.


При наземном ядерном взрыве на поверхности земли образуется воронка, размеры которой зависят от мощности взрыва и вида грунта .

Диаметр воронки, образующейся в сухих песчаных и глинистых грунтах, можно определить по формуле:

Где D диаметр воронки, м;
q – мощность взрыва, кТ.

Программа занимает всего 8 байт. Поэтому запишем ее в одну строку, без адресов:
3; F 1/x; ↔; F x y ; 3; 8; ×; С/П.

Порядок работы:

  1. Ввести мощность взрыва в кТ;
  2. Нажать В/О, С/П;
  3. Считать в RX диаметр воронки в метрах.

Например, для бомбы с тротиловым эквивалентом 1МТ диаметр воронки составит 380 м. Глубина воронки при этом будет приблизительно 40-60 м.

Так же просто, программой длиной семь байт, решается и обратная задача:
3; 8; ÷; В; F x 2 ; ×; С/П.

Порядок работы:

  1. Ввести диаметр воронки в метрах;
  2. Нажать В/О, С/П;
  3. Считать мощность взрыва в кТ.

Очаг ядерного поражения характеризуется :
а) массовым поражением людей и животных;
б) разрушением и повреждением наземных зданий и сооружений;
в) частичным разрушением, повреждением или завалом защитных сооружений ГО;
г) возникновением отдельных, сплошных и массовых пожаров;
д) образованием сплошных и частичных завалов улиц, проездов, внутриквартальных участков;
е) возникновением массовых аварий на сетях коммунального хозяйства;
ж) образованием районов и полос радиоактивного заражения местности при наземном взрыве.

Радиус поражения ударной волной, световым излучением и проникающей радиацией наземного взрыва несколько меньше, чем при воздушном. Характерной особенностью наземного взрыва является сильное радиоактивное заражение местности как в районе взрыва, так и по направлению движения радиоактивного облака.


Как показали теоретические исследования, радиусы зон разрушения и поражения ударной волной ядерных и термоядерных взрывов различной мощности пропорциональны кубическому корню из отношения тротиловых эквивалентов . Поэтому для приблизительного сравнения радиусов зон поражения ударной волной ядерных взрывов различной мощности можно пользоваться формулой:

где R1 и R1 - радиусы зон поражения, км; q1 и q2 - тротиловый эквивалент, МТ.

Составим программу расчета зон поражения, исходя из данных таблицы.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
0x П0 3 F 1/x F x y П4 ИП1 × ИП4 ИП2
1x × ИП4 ИП3 × ИП0 С/П БП 00

Перед запуском следует занести в регистры памяти значения R1=3,65; R2=7,5; R3=14.

Для расчета ввести в регистр X тротиловый эквивалент в МТ и нажать С/П. После окончания расчета в RT - радиус зоны полных разрушений в км, в RZ и RY соответственно радиусы зон сильных и слабых разрушений в км, в RX - исходное значение тротилового эквивалента в МТ.

Литература

  1. Егоров П.Т., Шляхов И.А., Алабин Н.И. Гражданская оборона. Изд. 2-ое. Учебник. - М.: Высшая школа, 1970, 544 с., илл.




error: Контент защищен !!