Logarifmlarni kamaytirish uchun formulalar. Logarifmlarni hisoblash, misollar, yechimlar

Logarifmning asosiy xossalari, logarifmning grafigi, aniqlanish sohasi, qiymatlar to‘plami, asosiy formulalari, o‘sish va kamayishi berilgan. Logarifmning hosilasini topish ko'rib chiqiladi. Shuningdek, integral, darajali qatorlarni kengaytirish va kompleks sonlar yordamida tasvirlash.

Tarkib

Domen, qiymatlar to'plami, o'sish, pasayish

Logarifm monotonik funktsiyadir, shuning uchun uning ekstremumlari yo'q. Logarifmning asosiy xususiyatlari jadvalda keltirilgan.

Domen 0 < x < + ∞ 0 < x < + ∞
Qiymatlar diapazoni - ∞ < y < + ∞ - ∞ < y < + ∞
Monoton monoton ravishda ortadi monoton tarzda kamayadi
Nollar, y= 0 x= 1 x= 1
Y o'qi bilan kesishish nuqtalari, x = 0 Yo'q Yo'q
+ ∞ - ∞
- ∞ + ∞

Shaxsiy qadriyatlar


10 ta asosiy logarifm deyiladi o'nlik logarifm va quyidagicha belgilanadi:

asosiy logarifm e chaqirdi tabiiy logarifm:

Asosiy logarifm formulalari

Teskari funktsiyaning ta'rifidan kelib chiqadigan logarifmning xususiyatlari:

Logarifmlarning asosiy xossasi va uning oqibatlari

Asosiy almashtirish formulasi

Logarifm - logarifm olishning matematik amalidir. Logarifm olishda omillarning ko'paytmalari hadlar yig'indisiga aylantiriladi.
Potentsiyalash - logarifmga teskari matematik operatsiya. Potentsiyalashda berilgan asos potentsiallashtirish bajariladigan ifoda kuchiga ko'tariladi. Bunda atamalar yig'indilari omillar mahsulotiga aylantiriladi.

Logarifmlarning asosiy formulalarini isbotlash

Logarifmlar bilan bog'liq formulalar ko'rsatkichli funktsiyalar formulalaridan va teskari funktsiyaning ta'rifidan kelib chiqadi.

Ko'rsatkichli funktsiyaning xususiyatini ko'rib chiqing
.
Keyin
.
Ko‘rsatkichli funksiya xossasini qo‘llang
:
.

Keling, asosiy o'zgarish formulasini isbotlaylik.
;
.
c = b sozlamasi, bizda:

Teskari funksiya

Logarifm asosining o'zaro nisbati a ko'rsatkichli ko'rsatkichli funktsiyadir.

Agar , keyin

Agar , keyin

Logarifmning hosilasi

X logarifm modulining hosilasi:
.
n-tartibning hosilasi:
.
Formulalarni chiqarish > > >

Logarifmaning hosilasini topish uchun uni asosga qisqartirish kerak e.
;
.

Integral

Logarifmning integrali qismlar bo'yicha integrallash orqali hisoblanadi: .
Shunday qilib,

Kompleks sonlar bilan ifodalangan ifodalar

Kompleks sonlar funktsiyasini ko'rib chiqing z:
.
Ekspress murakkab son z modul orqali r va argument φ :
.
Keyin, logarifmning xususiyatlaridan foydalanib, biz quyidagilarga ega bo'lamiz:
.
Yoki

Biroq, argument φ aniq belgilanmagan. Agar qo'ysak
, bu yerda n butun son,
keyin har xil uchun bir xil raqam bo'ladi n.

Demak, logarifm kompleks o‘zgaruvchining funksiyasi sifatida bir qiymatli funksiya emas.

Quvvat seriyasining kengayishi

, uchun kengayish sodir bo'ladi:

Adabiyotlar:
I.N. Bronshteyn, K.A. Semendyaev, Oliy o'quv yurtlari muhandislari va talabalari uchun matematika bo'yicha qo'llanma, Lan, 2009 yil.

Shuningdek qarang:

\(a^(b)=c\) \(\Chap oʻng oʻq\) \(\log_(a)(c)=b\)

Keling, buni osonroq tushuntiramiz. Masalan, \(\log_(2)(8)\) \(8\) olish uchun \(2\) ko'tarilishi kerak bo'lgan quvvatga teng. Bundan ma'lum bo'ladiki, \(\log_(2)(8)=3\).

Misollar:

\(\log_(5)(25)=2\)

chunki \(5^(2)=25\)

\(\log_(3)(81)=4\)

chunki \(3^(4)=81\)

\(\log_(2)\)\(\frac(1)(32)\) \(=-5\)

chunki \(2^(-5)=\)\(\frac(1)(32)\)

Logarifmning argumenti va asosi

Har qanday logarifm quyidagi "anatomiyaga" ega:

Logarifmning argumenti odatda uning darajasida yoziladi, asosi esa logarifm belgisiga yaqinroq pastki chiziqda yoziladi. Va bu yozuv shunday o'qiladi: "yigirma beshning logarifmi beshning asosiga".

Logarifmni qanday hisoblash mumkin?

Logarifmni hisoblash uchun siz savolga javob berishingiz kerak: argumentni olish uchun bazani qanday darajaga ko'tarish kerak?

Masalan, logarifmni hisoblang: a) \(\log_(4)(16)\) b) \(\log_(3)\)\(\frac(1)(3)\) c) \(\log_(\ sqrt (5))(1)\) d) \(\log_(\sqrt(7))(\sqrt(7))\) e) \(\log_(3)(\sqrt(3))\)

a) \(16\) ni olish uchun \(4\) ni qanday kuchga oshirish kerak? Shubhasiz, ikkinchisi. Shunung uchun:

\(\log_(4)(16)=2\)

\(\log_(3)\)\(\frac(1)(3)\) \(=-1\)

c) \(1\) ni olish uchun \(\sqrt(5)\) qanday quvvatga ko'tarilishi kerak? Va qaysi daraja har qanday raqamni birlik qiladi? Albatta, nol!

\(\log_(\sqrt(5))(1)=0\)

d) \(\sqrt(7)\) olish uchun \(\sqrt(7)\)ni qanday quvvatga oshirish kerak? Birinchisida - birinchi darajadagi har qanday raqam o'ziga teng.

\(\log_(\sqrt(7))(\sqrt(7))=1\)

e) \(\sqrt(3)\) olish uchun \(3\) ni qanday quvvatga oshirish kerak? Biz bilamizki, bu kasr darajasi va shuning uchun kvadrat ildiz \(\frac(1)(2)\) ning kuchidir.

\(\log_(3)(\sqrt(3))=\)\(\frac(1)(2)\)

Misol : Logarifmni hisoblang \(\log_(4\sqrt(2))(8)\)

Yechim :

\(\log_(4\sqrt(2))(8)=x\)

Logarifmning qiymatini topishimiz kerak, uni x deb belgilaymiz. Endi logarifmning ta'rifidan foydalanamiz:
\(\log_(a)(c)=b\) \(\Chapga o'q\) \(a^(b)=c\)

\((4\sqrt(2))^(x)=8\)

\(4\sqrt(2)\) va \(8\) qanday bog'lanadi? Ikki, chunki ikkala raqam ham ikkita bilan ifodalanishi mumkin:
\(4=2^(2)\) \(\sqrt(2)=2^(\frac(1)(2))\) \(8=2^(3)\)

\(((2^(2)\cdot2^(\frac(1)(2))))^(x)=2^(3)\)

Chapda biz daraja xususiyatlaridan foydalanamiz: \(a^(m)\cdot a^(n)=a^(m+n)\) va \((a^(m))^(n)=a ^(m\cdot n)\)

\(2^(\frac(5)(2)x)=2^(3)\)

Bazalar teng, biz ko'rsatkichlar tengligiga o'tamiz

\(\frac(5x)(2)\) \(=3\)


Tenglamaning ikkala tomonini \(\frac(2)(5)\) ga ko'paytiring.


Olingan ildiz logarifmning qiymati

Javob : \(\log_(4\sqrt(2))(8)=1,2\)

Logarifm nima uchun ixtiro qilingan?

Buni tushunish uchun tenglamani yechamiz: \(3^(x)=9\). Tenglik ishlashi uchun \(x\) ni moslang. Albatta, \(x=2\).

Endi tenglamani yeching: \(3^(x)=8\).X nimaga teng? Gap shundaki.

Eng zukkolar aytadilar: "X ikkidan bir oz kamroq". Bu raqam qanday yozilishi kerak? Bu savolga javob berish uchun ular logarifm bilan kelishdi. Unga rahmat, bu erda javobni \(x=\log_(3)(8)\) deb yozish mumkin.

Shuni ta'kidlamoqchimanki, \(\log_(3)(8)\), shuningdek har qanday logarifm shunchaki raqamdir. Ha, bu g'ayrioddiy ko'rinadi, lekin u qisqa. Chunki agar biz uni o'nlik kasr sifatida yozmoqchi bo'lsak, u quyidagicha ko'rinadi: \(1.892789260714.....\)

Misol : \(4^(5x-4)=10\) tenglamani yeching.

Yechim :

\(4^(5x-4)=10\)

\(4^(5x-4)\) va \(10\) bir xil asosga qisqartirilmaydi. Shunday qilib, bu erda siz logarifmsiz qilolmaysiz.

Keling, logarifmning ta'rifidan foydalanamiz:
\(a^(b)=c\) \(\Chap oʻng oʻq\) \(\log_(a)(c)=b\)

\(\log_(4)(10)=5x-4\)

Tenglamani x chap tomonda bo'ladigan tarzda aylantiring

\(5x-4=\log_(4)(10)\)

Bizdan oldin. \(4\) ni oʻngga suring.

Va logarifmdan qo'rqmang, unga oddiy raqam kabi munosabatda bo'ling.

\(5x=\log_(4)(10)+4\)

Tenglamani 5 ga bo'ling

\(x=\)\(\frac(\log_(4)(10)+4)(5)\)


Mana bizning ildizimiz. Ha, g'ayrioddiy ko'rinadi, lekin javob tanlanmagan.

Javob : \(\frac(\log_(4)(10)+4)(5)\)

O'nlik va natural logarifmlar

Logarifm ta'rifida aytilganidek, uning asosi har qanday bo'lishi mumkin ijobiy raqam, \((a>0, a\neq1)\) birligidan tashqari. Va barcha mumkin bo'lgan asoslar orasida ikkitasi shunchalik tez-tez uchraydiki, ular bilan logarifmlar uchun maxsus qisqa yozuv ixtiro qilingan:

Natural logarifm: asosi Eyler soni \(e\) (taxminan \(2,7182818…\) ga teng) va logarifm \(\ln(a)\) shaklida yozilgan logarifm.

Ya'ni, \(\ln(a)\) \(\log_(e)(a)\) bilan bir xil

O'nlik logarifm: Bazasi 10 ga teng bo'lgan logarifm \(\lg(a)\) deb yoziladi.

Ya'ni, \(\lg(a)\) \(\log_(10)(a)\) bilan bir xil, bu yerda \(a\) qandaydir son.

Asosiy logarifmik identifikatsiya

Logarifmlar juda ko'p xususiyatlarga ega. Ulardan biri "Asosiy logarifmik identifikatsiya" deb ataladi va quyidagicha ko'rinadi:

\(a^(\log_(a)(c))=c\)

Bu xususiyat to'g'ridan-to'g'ri ta'rifdan kelib chiqadi. Keling, ushbu formula qanday paydo bo'lganini ko'rib chiqaylik.

Logarifmning qisqacha ta'rifini eslang:

agar \(a^(b)=c\), u holda \(\log_(a)(c)=b\)

Ya'ni, \(b\) \(\log_(a)(c)\) bilan bir xil. Keyin \(a^(b)=c\) formulasida \(b\) o'rniga \(\log_(a)(c)\) ni yozishimiz mumkin. Bu chiqdi \(a^(\log_(a)(c))=c\) - asosiy logarifmik identifikatsiya.

Logarifmlarning qolgan xossalarini topishingiz mumkin. Ularning yordami bilan siz to'g'ridan-to'g'ri hisoblash qiyin bo'lgan logarifmlar bilan ifodalarning qiymatlarini soddalashtirishingiz va hisoblashingiz mumkin.

Misol : \(36^(\log_(6)(5))\) ifoda qiymatini toping.

Yechim :

Javob : \(25\)

Raqamni logarifm sifatida qanday yozish mumkin?

Yuqorida aytib o'tilganidek, har qanday logarifm shunchaki raqamdir. Buning aksi ham to'g'ri: har qanday sonni logarifm sifatida yozish mumkin. Masalan, \(\log_(2)(4)\) ikkiga teng ekanligini bilamiz. Keyin ikkita o'rniga \(\log_(2)(4)\) yozishingiz mumkin.

Lekin \(\log_(3)(9)\) ham \(2\) ga teng, shuning uchun \(2=\log_(3)(9)\) ni ham yozishingiz mumkin. Xuddi shunday, \(\log_(5)(25)\) va \(\log_(9)(81)\) va boshqalar bilan. Ya'ni, shunday bo'ladi

\(2=\log_(2)(4)=\log_(3)(9)=\log_(4)(16)=\log_(5)(25)=\log_(6)(36)=\ log_(7)(49)...\)

Shunday qilib, agar kerak bo'lsa, ikkalasini istalgan joyda (hatto tenglamada, hatto ifodada, hatto tengsizlikda ham) logarifm sifatida yozishimiz mumkin - biz shunchaki kvadrat asosni argument sifatida yozamiz.

Bu uchlik bilan bir xil - u \(\log_(2)(8)\) yoki \(\log_(3)(27)\) yoki \(\log_(4)() shaklida yozilishi mumkin. 64) \) ... Bu erda biz kubdagi asosni argument sifatida yozamiz:

\(3=\log_(2)(8)=\log_(3)(27)=\log_(4)(64)=\log_(5)(125)=\log_(6)(216)=\ log_(7)(343)...\)

Va to'rttasi bilan:

\(4=\log_(2)(16)=\log_(3)(81)=\log_(4)(256)=\log_(5)(625)=\log_(6)(1296)=\ log_(7)(2401)...\)

Va minus bilan:

\(-1=\) \(\log_(2)\)\(\frac(1)(2)\) \(=\) \(\log_(3)\)\(\frac(1)( 3)\) \(=\) \(\log_(4)\)\(\frac(1)(4)\) \(=\) \(\log_(5)\)\(\frac(1) )(5)\) \(=\) \(\log_(6)\)\(\frac(1)(6)\) \(=\) \(\log_(7)\)\(\frac (1)(7)\)\(...\)

Va uchdan bir qismi bilan:

\(\frac(1)(3)\) \(=\log_(2)(\sqrt(2))=\log_(3)(\sqrt(3))=\log_(4)(\sqrt( 4))=\log_(5)(\sqrt(5))=\log_(6)(\sqrt(6))=\log_(7)(\sqrt(7))...\)

Har qanday son \(a\) asosi \(b\) bilan logarifm sifatida ifodalanishi mumkin: \(a=\log_(b)(b^(a))\)

Misol : Ifodaning qiymatini toping \(\ frac(\log_(2)(14))(1+\log_(2)(7))\)

Yechim :

Javob : \(1\)

Musbat b sonining a asosi uchun logarifmi (a>0, a 1 ga teng emas) c soni shundayki a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b) > 0)       

E'tibor bering, ijobiy bo'lmagan sonning logarifmi aniqlanmagan. Shuningdek, logarifmning asosi 1 ga teng bo'lmagan musbat son bo'lishi kerak.Masalan, -2 kvadrat bo'lsa, 4 raqamini olamiz, lekin bu 4 ning asosi -2 logarifmi 2 ga teng degani emas.

Asosiy logarifmik identifikatsiya

a log a b = b (a > 0, a ≠ 1) (2)

Ushbu formulaning o'ng va chap qismlarini aniqlash sohalari har xil bo'lishi muhimdir. Chap tomon faqat b>0, a>0 va a ≠ 1 uchun aniqlanadi. O'ng tomon har qanday b uchun aniqlanadi va a ga umuman bog'liq emas. Shunday qilib, tenglamalar va tengsizliklarni echishda asosiy logarifmik "o'ziga xoslik" ni qo'llash DPV ning o'zgarishiga olib kelishi mumkin.

Logarifmni aniqlashning ikkita aniq natijasi

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Darhaqiqat, a raqamini birinchi darajaga ko'tarishda biz bir xil raqamni olamiz va uni nol darajaga ko'tarishda biz bitta raqamni olamiz.

Ko'paytmaning logarifmi va qismning logarifmi

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Men maktab o'quvchilarini logarifmik tenglamalar va tengsizliklarni yechishda ushbu formulalardan o'ylamasdan foydalanishdan ogohlantirmoqchiman. Ulardan “chapdan o‘ngga” foydalanilganda ODZ torayadi, logarifmlar yig‘indisi yoki ayirmasidan mahsulot yoki qismning logarifmiga o‘tganda ODZ kengayadi.

Haqiqatan ham, log a (f (x) g (x)) ifodasi ikki holatda aniqlanadi: ikkala funktsiya qat'iy musbat bo'lganda yoki f (x) va g (x) ikkalasi ham noldan kichik bo'lganda.

Ushbu ifodani log a f (x) + log a g (x) yig'indisiga aylantirib, biz faqat f(x)>0 va g(x)>0 bo'lgan holat bilan cheklanishga majbur bo'lamiz. Ruxsat etilgan qiymatlar oralig'ining torayishi mavjud va bu mutlaqo qabul qilinishi mumkin emas, chunki bu yechimlarning yo'qolishiga olib kelishi mumkin. Xuddi shunday muammo formula (6) uchun ham mavjud.

Darajani logarifm belgisidan chiqarish mumkin

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Va yana aniqlik uchun chaqirmoqchiman. Quyidagi misolni ko'rib chiqing:

Log a (f (x) 2 = 2 log a f (x)

Tenglikning chap tomoni f(x) ning noldan tashqari barcha qiymatlari uchun aniq belgilangan. O'ng tomon faqat f(x)>0 uchun! Logarifmadan quvvatni olib, biz yana ODZni toraytiramiz. Teskari protsedura ruxsat etilgan qiymatlar doirasini kengaytirishga olib keladi. Bu mulohazalar nafaqat 2 ning kuchiga, balki har qanday teng kuchga ham tegishli.

Yangi bazaga o'tish uchun formula

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Konvertatsiya paytida ODZ o'zgarmaydigan kamdan-kam holatlar. Agar siz c bazasini oqilona tanlagan bo'lsangiz (ijobiy va 1 ga teng emas), yangi bazaga o'tish formulasi mutlaqo xavfsizdir.

Agar biz b raqamini yangi c asosi sifatida tanlasak, formulaning (8) muhim alohida holatini olamiz:

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Logarifmlar bilan bir nechta oddiy misollar

1-misol Hisoblang: lg2 + lg50.
Yechim. lg2 + lg50 = lg100 = 2. Biz (5) logarifmlar yig'indisi formulasidan va o'nlik logarifmning ta'rifidan foydalandik.


2-misol Hisoblang: lg125/lg5.
Yechim. lg125/lg5 = log 5 125 = 3. Biz yangi bazaga o'tish formulasidan foydalandik (8).

Logarifmlarga oid formulalar jadvali

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

asosiy xususiyatlar.

  1. logax + logay = log(x y);
  2. logax - logay = log(x: y).

bir xil asoslar

log6 4 + log6 9.

Endi vazifani biroz murakkablashtiramiz.

Logarifmlarni yechishga misollar

Agar logarifmning asosi yoki argumentida daraja bo'lsa-chi? Keyin ushbu daraja ko'rsatkichini quyidagi qoidalarga muvofiq logarifm belgisidan chiqarish mumkin:

Albatta, agar ODZ logarifmi kuzatilsa, bu qoidalarning barchasi mantiqiy bo'ladi: a > 0, a ≠ 1, x >

Vazifa. Ifodaning qiymatini toping:

Yangi poydevorga o'tish

Logarifm logaksi berilsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Vazifa. Ifodaning qiymatini toping:

Shuningdek qarang:


Logarifmning asosiy xossalari

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ko‘rsatkich 2,718281828…. Eksponentni eslab qolish uchun siz qoidani o'rganishingiz mumkin: ko'rsatkich 2,7 va Leo Tolstoyning tug'ilgan yilidan ikki marta.

Logarifmlarning asosiy xossalari

Ushbu qoidani bilib, siz eksponentning aniq qiymatini ham, Lev Tolstoyning tug'ilgan sanasini ham bilib olasiz.

Logarifmlar uchun misollar

Ifodalar logarifmini oling

1-misol
a). x=10ac^2 (a>0, c>0).

3,5 xossalari bo'yicha biz hisoblaymiz

2.

3.



2-misol x if ni toping


3-misol. Logarifmlarning qiymati berilsin

Agar log(x) ni hisoblang




Logarifmlarning asosiy xossalari

Logarifmlar, har qanday raqam kabi, har qanday usulda qo'shilishi, ayirilishi va o'zgartirilishi mumkin. Ammo logarifmlar juda oddiy raqamlar emasligi sababli, bu erda deyiladi qoidalar mavjud asosiy xususiyatlar.

Bu qoidalar ma'lum bo'lishi kerak - ularsiz hech qanday jiddiy logarifmik muammoni hal qilib bo'lmaydi. Bundan tashqari, ular juda oz - hamma narsani bir kunda o'rganish mumkin. Shunday qilib, keling, boshlaylik.

Logarifmlarni qo'shish va ayirish

Bir xil asosga ega ikkita logarifmni ko'rib chiqing: logax va logay. Keyin ularni qo'shish va ayirish mumkin, va:

  1. logax + logay = log(x y);
  2. logax - logay = log(x: y).

Demak, logarifmlar yig‘indisi ko‘paytmaning logarifmiga teng, farq esa bo‘linmaning logarifmidir. E'tibor bering: bu erda asosiy nuqta - bir xil asoslar. Agar asoslar boshqacha bo'lsa, bu qoidalar ishlamaydi!

Ushbu formulalar logarifmik ifodani uning alohida qismlari hisobga olinmagan taqdirda ham hisoblashga yordam beradi ("Logarifm nima" darsiga qarang). Misollarni ko'rib chiqing va qarang:

Logarifmlarning asoslari bir xil bo'lgani uchun biz yig'indi formulasidan foydalanamiz:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Vazifa. Ifodaning qiymatini toping: log2 48 − log2 3.

Asoslar bir xil, biz farq formulasidan foydalanamiz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Vazifa. Ifodaning qiymatini toping: log3 135 − log3 5.

Shunga qaramay, asoslar bir xil, shuning uchun bizda:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ko'rib turganingizdek, asl iboralar "yomon" logarifmlardan iborat bo'lib, ular alohida ko'rib chiqilmaydi. Ammo transformatsiyalardan keyin juda oddiy raqamlar paydo bo'ladi. Ko'pgina testlar ushbu faktga asoslanadi. Ha, nazorat - imtihonda barcha jiddiylikdagi o'xshash iboralar (ba'zan - deyarli o'zgarishlarsiz) taklif etiladi.

Logarifmadan ko'rsatkichni olib tashlash

Oxirgi qoida ularning birinchi ikkitasiga mos kelishini ko'rish oson. Ammo baribir buni eslab qolish yaxshiroqdir - ba'zi hollarda bu hisob-kitoblar miqdorini sezilarli darajada kamaytiradi.

Albatta, ODZ logarifmi kuzatilsa, bu qoidalarning barchasi mantiqiy bo'ladi: a > 0, a ≠ 1, x > 0. Va yana bir narsa: barcha formulalarni nafaqat chapdan o'ngga, balki aksincha qo'llashni o'rganing, ya'ni. logarifmning o'ziga logarifm belgisidan oldingi raqamlarni kiritishingiz mumkin. Bu eng ko'p talab qilinadigan narsa.

Vazifa. Ifodaning qiymatini toping: log7 496.

Keling, birinchi formula bo'yicha argumentdagi darajadan xalos bo'laylik:
log7 496 = 6 log7 49 = 6 2 = 12

Vazifa. Ifodaning qiymatini toping:

E'tibor bering, maxraj asosi va argumenti aniq darajalar bo'lgan logarifmdir: 16 = 24; 49 = 72. Bizda:

Menimcha, oxirgi misol tushuntirishga muhtoj. Logarifmlar qayerga ketdi? So'nggi daqiqagacha biz faqat maxraj bilan ishlaymiz.

Logarifmlar formulalari. Logarifmlar yechimlarga misoldir.

Ular logarifmning asosini va argumentini darajalar shaklida taqdim etdilar va ko'rsatkichlarni olib tashladilar - ular "uch qavatli" kasrga ega bo'lishdi.

Endi asosiy kasrni ko'rib chiqaylik. Numerator va maxraj bir xil raqamga ega: log2 7. log2 7 ≠ 0 bo'lgani uchun biz kasrni qisqartirishimiz mumkin - 2/4 maxrajda qoladi. Arifmetika qoidalariga ko'ra, to'rtta hisoblagichga o'tkazilishi mumkin, bu bajarildi. Natijada javob: 2.

Yangi poydevorga o'tish

Logarifmlarni qo'shish va ayirish qoidalari haqida gapirganda, ular faqat bir xil asoslar bilan ishlashini alohida ta'kidladim. Agar asoslar boshqacha bo'lsa-chi? Agar ular bir xil sonning aniq kuchlari bo'lmasa-chi?

Yangi bazaga o'tish uchun formulalar yordamga keladi. Biz ularni teorema shaklida shakllantiramiz:

Logarifm logaksi berilsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Xususan, agar c = x qo'ysak, biz quyidagilarni olamiz:

Ikkinchi formuladan kelib chiqadiki, logarifmning asosini va argumentini almashtirish mumkin, ammo bu holda butun ifoda "aylantiriladi", ya'ni. logarifm maxrajda joylashgan.

Bu formulalar oddiy sonli ifodalarda kam uchraydi. Ularning qanchalik qulay ekanligini faqat logarifmik tenglamalar va tengsizliklarni yechishdagina baholash mumkin.

Biroq, yangi poydevorga o'tishdan tashqari, umuman hal qilib bo'lmaydigan vazifalar mavjud. Keling, ulardan bir nechtasini ko'rib chiqaylik:

Vazifa. Ifodaning qiymatini toping: log5 16 log2 25.

E'tibor bering, ikkala logarifmning argumentlari aniq ko'rsatkichlardir. Keling, ko'rsatkichlarni chiqaramiz: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Endi ikkinchi logarifmni aylantiramiz:

Mahsulot omillarni almashtirishdan o'zgarmaganligi sababli, biz tinchgina to'rt va ikkitani ko'paytirdik va keyin logarifmlarni aniqladik.

Vazifa. Ifodaning qiymatini toping: log9 100 lg 3.

Birinchi logarifmning asosi va argumenti aniq kuchlardir. Keling, buni yozamiz va ko'rsatkichlardan xalos bo'laylik:

Endi yangi bazaga o'tish orqali o'nlik logarifmdan xalos bo'laylik:

Asosiy logarifmik identifikatsiya

Ko'pincha echish jarayonida raqamni berilgan asosga logarifm sifatida ko'rsatish talab qilinadi. Bunday holda, formulalar bizga yordam beradi:

Birinchi holda, n soni argumentda ko'rsatkichga aylanadi. n soni mutlaqo har qanday bo'lishi mumkin, chunki bu faqat logarifmning qiymati.

Ikkinchi formula aslida tarjima qilingan ta'rifdir. U shunday deb ataladi:

Haqiqatan ham, agar b soni shunday darajaga ko'tarilsa nima bo'ladi, bu darajadagi b soni a sonini beradi? To'g'ri: bu bir xil raqam a. Ushbu xatboshini yana diqqat bilan o'qing - ko'p odamlar unga "osib qo'yishadi".

Yangi asosiy konvertatsiya formulalari singari, asosiy logarifmik identifikatsiya ba'zan yagona mumkin bo'lgan yechimdir.

Vazifa. Ifodaning qiymatini toping:

E'tibor bering, log25 64 = log5 8 - faqat bazadan kvadrat va logarifm argumentini chiqarib tashladi. Kuchlarni ko'paytirish qoidalarini hisobga olgan holda bir xil asos, biz olamiz:

Agar kimdir bilmasa, bu Yagona davlat imtihonidan olingan haqiqiy vazifa edi 🙂

Logarifmik birlik va logarifmik nol

Xulosa qilib aytganda, men xususiyatlarni chaqirish qiyin bo'lgan ikkita identifikatsiyani beraman - aksincha, bu logarifm ta'rifidan olingan natijalar. Ular doimo muammolarda topiladi va hayratlanarli, hatto "ilg'or" talabalar uchun ham muammolarni keltirib chiqaradi.

  1. logaa = 1. Bir marta eslab qoling: har qanday a asosining logarifmi shu asosning o'zidan bittaga teng.
  2. loga 1 = 0. a asosi har qanday bo'lishi mumkin, lekin agar argument bitta bo'lsa, logarifm nolga teng! Chunki a0 = 1 ta'rifning bevosita natijasidir.

Bu barcha xususiyatlar. Ularni amalda qo'llashni mashq qiling! Dars boshida cheat varag'ini yuklab oling, uni chop eting va muammolarni hal qiling.

Shuningdek qarang:

b sonining a asosiga logarifmi ifodani bildiradi. Logarifmni hisoblash, tenglik to'g'ri bo'lgan x () kuchini topishni anglatadi

Logarifmning asosiy xossalari

Yuqoridagi xususiyatlarni bilish kerak, chunki ular asosida deyarli barcha masalalar va misollar logarifmlar asosida hal qilinadi. Qolgan ekzotik xususiyatlar ushbu formulalar bilan matematik manipulyatsiyalar orqali olinishi mumkin

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Hisoblashda logarifmlarning yig'indisi va ayirmasi formulalari (3.4) juda tez-tez uchraydi. Qolganlari biroz murakkab, ammo bir qator vazifalarda ular murakkab ifodalarni soddalashtirish va ularning qiymatlarini hisoblash uchun ajralmas hisoblanadi.

Logarifmlarning umumiy holatlari

Ba'zi umumiy logarifmlar asosi hatto o'n, eksponensial yoki ikkilik bo'lgan logarifmlardir.
O'nta asosiy logarifm odatda o'nta asosiy logarifm deb ataladi va oddiygina lg (x) bilan belgilanadi.

Yozuvdan ko'rinib turibdiki, yozuvda asoslar yozilmagan. Misol uchun

Natural logarifm asosi ko'rsatkich bo'lgan logarifmdir (ln(x) bilan belgilanadi).

Ko‘rsatkich 2,718281828…. Eksponentni eslab qolish uchun siz qoidani o'rganishingiz mumkin: ko'rsatkich 2,7 va Leo Tolstoyning tug'ilgan yilidan ikki marta. Ushbu qoidani bilib, siz eksponentning aniq qiymatini ham, Lev Tolstoyning tug'ilgan sanasini ham bilib olasiz.

Yana bir muhim asos ikki logarifmdir

Funktsiya logarifmining hosilasi o'zgaruvchiga bo'lingan biriga teng

Integral yoki antiderivativ logarifm bog'liqlik bilan aniqlanadi

Yuqoridagi material logarifmlar va logarifmlar bilan bog'liq keng ko'lamli masalalarni hal qilish uchun etarli. Materialni o'zlashtirish uchun men maktab o'quv dasturi va universitetlardan bir nechta umumiy misollarni keltiraman.

Logarifmlar uchun misollar

Ifodalar logarifmini oling

1-misol
a). x=10ac^2 (a>0, c>0).

3,5 xossalari bo'yicha biz hisoblaymiz

2.
Logarifmlarning farq xususiyatiga ko'ra, biz bor

3.
3.5 xossalaridan foydalanib topamiz

Bir qator qoidalardan foydalangan holda murakkab ko'rinadigan ibora shaklga soddalashtirilgan

Logarifm qiymatlarini topish

2-misol x if ni toping

Yechim. Hisoblash uchun oxirgi muddatgacha 5 va 13 xossalarini qo'llaymiz

Yozuvda almashtiring va motam tuting

Asoslar teng bo'lgani uchun biz ifodalarni tenglashtiramiz

Logarifmlar. Birinchi daraja.

Logarifmlarning qiymati berilsin

Agar log(x) ni hisoblang

Yechish: Logarifmni hadlar yig‘indisi orqali yozish uchun o‘zgaruvchining logarifmini oling


Bu logarifmlar va ularning xususiyatlari bilan tanishishning boshlanishi. Hisob-kitoblarni mashq qiling, amaliy ko'nikmalaringizni boyiting - tez orada logarifmik tenglamalarni yechish uchun olingan bilimlar kerak bo'ladi. Bunday tenglamalarni echishning asosiy usullarini o'rganib chiqib, biz sizning bilimingizni yana bir muhim mavzu - logarifmik tengsizliklar bo'yicha kengaytiramiz ...

Logarifmlarning asosiy xossalari

Logarifmlar, har qanday raqam kabi, har qanday usulda qo'shilishi, ayirilishi va o'zgartirilishi mumkin. Ammo logarifmlar juda oddiy raqamlar emasligi sababli, bu erda deyiladi qoidalar mavjud asosiy xususiyatlar.

Bu qoidalar ma'lum bo'lishi kerak - ularsiz hech qanday jiddiy logarifmik muammoni hal qilib bo'lmaydi. Bundan tashqari, ular juda oz - hamma narsani bir kunda o'rganish mumkin. Shunday qilib, keling, boshlaylik.

Logarifmlarni qo'shish va ayirish

Bir xil asosga ega ikkita logarifmni ko'rib chiqing: logax va logay. Keyin ularni qo'shish va ayirish mumkin, va:

  1. logax + logay = log(x y);
  2. logax - logay = log(x: y).

Demak, logarifmlar yig‘indisi ko‘paytmaning logarifmiga teng, farq esa bo‘linmaning logarifmidir. E'tibor bering: bu erda asosiy nuqta - bir xil asoslar. Agar asoslar boshqacha bo'lsa, bu qoidalar ishlamaydi!

Ushbu formulalar logarifmik ifodani uning alohida qismlari hisobga olinmagan taqdirda ham hisoblashga yordam beradi ("Logarifm nima" darsiga qarang). Misollarni ko'rib chiqing va qarang:

Vazifa. Ifodaning qiymatini toping: log6 4 + log6 9.

Logarifmlarning asoslari bir xil bo'lgani uchun biz yig'indi formulasidan foydalanamiz:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Vazifa. Ifodaning qiymatini toping: log2 48 − log2 3.

Asoslar bir xil, biz farq formulasidan foydalanamiz:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Vazifa. Ifodaning qiymatini toping: log3 135 − log3 5.

Shunga qaramay, asoslar bir xil, shuning uchun bizda:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ko'rib turganingizdek, asl iboralar "yomon" logarifmlardan iborat bo'lib, ular alohida ko'rib chiqilmaydi. Ammo transformatsiyalardan keyin juda oddiy raqamlar paydo bo'ladi. Ko'pgina testlar ushbu faktga asoslanadi. Ha, nazorat - imtihonda barcha jiddiylikdagi o'xshash iboralar (ba'zan - deyarli o'zgarishlarsiz) taklif etiladi.

Logarifmadan ko'rsatkichni olib tashlash

Endi vazifani biroz murakkablashtiramiz. Agar logarifmning asosi yoki argumentida daraja bo'lsa-chi? Keyin ushbu daraja ko'rsatkichini quyidagi qoidalarga muvofiq logarifm belgisidan chiqarish mumkin:

Oxirgi qoida ularning birinchi ikkitasiga mos kelishini ko'rish oson. Ammo baribir buni eslab qolish yaxshiroqdir - ba'zi hollarda bu hisob-kitoblar miqdorini sezilarli darajada kamaytiradi.

Albatta, ODZ logarifmi kuzatilsa, bu qoidalarning barchasi mantiqiy bo'ladi: a > 0, a ≠ 1, x > 0. Va yana bir narsa: barcha formulalarni nafaqat chapdan o'ngga, balki aksincha qo'llashni o'rganing, ya'ni. logarifmning o'ziga logarifm belgisidan oldingi raqamlarni kiritishingiz mumkin.

Logarifmlarni qanday yechish mumkin

Bu eng ko'p talab qilinadigan narsa.

Vazifa. Ifodaning qiymatini toping: log7 496.

Keling, birinchi formula bo'yicha argumentdagi darajadan xalos bo'laylik:
log7 496 = 6 log7 49 = 6 2 = 12

Vazifa. Ifodaning qiymatini toping:

E'tibor bering, maxraj asosi va argumenti aniq darajalar bo'lgan logarifmdir: 16 = 24; 49 = 72. Bizda:

Menimcha, oxirgi misol tushuntirishga muhtoj. Logarifmlar qayerga ketdi? So'nggi daqiqagacha biz faqat maxraj bilan ishlaymiz. Ular logarifmning asosini va argumentini darajalar shaklida taqdim etdilar va ko'rsatkichlarni olib tashladilar - ular "uch qavatli" kasrga ega bo'lishdi.

Endi asosiy kasrni ko'rib chiqaylik. Numerator va maxraj bir xil raqamga ega: log2 7. log2 7 ≠ 0 bo'lgani uchun biz kasrni qisqartirishimiz mumkin - 2/4 maxrajda qoladi. Arifmetika qoidalariga ko'ra, to'rtta hisoblagichga o'tkazilishi mumkin, bu bajarildi. Natijada javob: 2.

Yangi poydevorga o'tish

Logarifmlarni qo'shish va ayirish qoidalari haqida gapirganda, ular faqat bir xil asoslar bilan ishlashini alohida ta'kidladim. Agar asoslar boshqacha bo'lsa-chi? Agar ular bir xil sonning aniq kuchlari bo'lmasa-chi?

Yangi bazaga o'tish uchun formulalar yordamga keladi. Biz ularni teorema shaklida shakllantiramiz:

Logarifm logaksi berilsin. U holda c > 0 va c ≠ 1 bo'lgan har qanday c soni uchun tenglik to'g'ri bo'ladi:

Xususan, agar c = x qo'ysak, biz quyidagilarni olamiz:

Ikkinchi formuladan kelib chiqadiki, logarifmning asosini va argumentini almashtirish mumkin, ammo bu holda butun ifoda "aylantiriladi", ya'ni. logarifm maxrajda joylashgan.

Bu formulalar oddiy sonli ifodalarda kam uchraydi. Ularning qanchalik qulay ekanligini faqat logarifmik tenglamalar va tengsizliklarni yechishdagina baholash mumkin.

Biroq, yangi poydevorga o'tishdan tashqari, umuman hal qilib bo'lmaydigan vazifalar mavjud. Keling, ulardan bir nechtasini ko'rib chiqaylik:

Vazifa. Ifodaning qiymatini toping: log5 16 log2 25.

E'tibor bering, ikkala logarifmning argumentlari aniq ko'rsatkichlardir. Keling, ko'rsatkichlarni chiqaramiz: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Endi ikkinchi logarifmni aylantiramiz:

Mahsulot omillarni almashtirishdan o'zgarmaganligi sababli, biz tinchgina to'rt va ikkitani ko'paytirdik va keyin logarifmlarni aniqladik.

Vazifa. Ifodaning qiymatini toping: log9 100 lg 3.

Birinchi logarifmning asosi va argumenti aniq kuchlardir. Keling, buni yozamiz va ko'rsatkichlardan xalos bo'laylik:

Endi yangi bazaga o'tish orqali o'nlik logarifmdan xalos bo'laylik:

Asosiy logarifmik identifikatsiya

Ko'pincha echish jarayonida raqamni berilgan asosga logarifm sifatida ko'rsatish talab qilinadi. Bunday holda, formulalar bizga yordam beradi:

Birinchi holda, n soni argumentda ko'rsatkichga aylanadi. n soni mutlaqo har qanday bo'lishi mumkin, chunki bu faqat logarifmning qiymati.

Ikkinchi formula aslida tarjima qilingan ta'rifdir. U shunday deb ataladi:

Haqiqatan ham, agar b soni shunday darajaga ko'tarilsa nima bo'ladi, bu darajadagi b soni a sonini beradi? To'g'ri: bu bir xil raqam a. Ushbu xatboshini yana diqqat bilan o'qing - ko'p odamlar unga "osib qo'yishadi".

Yangi asosiy konvertatsiya formulalari singari, asosiy logarifmik identifikatsiya ba'zan yagona mumkin bo'lgan yechimdir.

Vazifa. Ifodaning qiymatini toping:

E'tibor bering, log25 64 = log5 8 - faqat bazadan kvadrat va logarifm argumentini chiqarib tashladi. Quvvatlarni bir xil asos bilan ko'paytirish qoidalarini hisobga olsak, biz quyidagilarni olamiz:

Agar kimdir bilmasa, bu Yagona davlat imtihonidan olingan haqiqiy vazifa edi 🙂

Logarifmik birlik va logarifmik nol

Xulosa qilib aytganda, men xususiyatlarni chaqirish qiyin bo'lgan ikkita identifikatsiyani beraman - aksincha, bu logarifm ta'rifidan olingan natijalar. Ular doimo muammolarda topiladi va hayratlanarli, hatto "ilg'or" talabalar uchun ham muammolarni keltirib chiqaradi.

  1. logaa = 1. Bir marta eslab qoling: har qanday a asosining logarifmi shu asosning o'zidan bittaga teng.
  2. loga 1 = 0. a asosi har qanday bo'lishi mumkin, lekin agar argument bitta bo'lsa, logarifm nolga teng! Chunki a0 = 1 ta'rifning bevosita natijasidir.

Bu barcha xususiyatlar. Ularni amalda qo'llashni mashq qiling! Dars boshida cheat varag'ini yuklab oling, uni chop eting va muammolarni hal qiling.


Biz logarifmlarni o'rganishda davom etamiz. Ushbu maqolada biz bu haqda gaplashamiz logarifmlarni hisoblash, bu jarayon deyiladi logarifm. Birinchidan, ta'rif bo'yicha logarifmlarni hisoblash bilan shug'ullanamiz. Keyinchalik, logarifmlarning qiymatlari ularning xususiyatlaridan foydalangan holda qanday topilganligini ko'rib chiqing. Shundan so'ng, biz boshqa logarifmlarning dastlab berilgan qiymatlari orqali logarifmlarni hisoblash haqida to'xtalamiz. Va nihoyat, keling, logarifmlar jadvallarini qanday ishlatishni o'rganamiz. Butun nazariya batafsil yechimlari bilan misollar bilan ta'minlangan.

Sahifani navigatsiya qilish.

Ta'rif bo'yicha logarifmlarni hisoblash

Eng oddiy hollarda tez va oson bajarish mumkin ta'rifi bo'yicha logarifmni topish. Keling, bu jarayon qanday sodir bo'lishini batafsil ko'rib chiqaylik.

Uning mohiyati b raqamini a c ko'rinishida ifodalashdan iborat bo'lib, logarifmning ta'rifi bo'yicha c soni logarifmning qiymati hisoblanadi. Ya'ni, ta'rifga ko'ra, logarifmni topish quyidagi tenglik zanjiriga mos keladi: log a b=log a a c =c .

Shunday qilib, logarifmni hisoblash, ta'rifiga ko'ra, shunday c raqamini topishga to'g'ri keladi, a c \u003d b va c sonining o'zi logarifmning kerakli qiymatidir.

Oldingi paragraflarning ma'lumotlarini hisobga olgan holda, logarifm belgisi ostidagi raqam logarifm asosining ma'lum darajasi bilan berilganda, siz darhol logarifm nimaga teng ekanligini ko'rsatishingiz mumkin - bu ko'rsatkichga teng. Keling, misollarni ko'rsatamiz.

Misol.

log 2 2 −3 ni toping va e 5.3 ning natural logarifmini ham hisoblang.

Yechim.

Logarifmning ta'rifi darhol log 2 2 -3 = -3 ekanligini aytishga imkon beradi. Haqiqatan ham, logarifmning belgisi ostidagi raqam 2 asosi -3 darajasiga teng.

Xuddi shunday, biz ikkinchi logarifmni topamiz: lne 5,3 =5,3.

Javob:

log 2 2 -3 = -3 va lne 5,3 =5,3.

Agar logarifm belgisi ostidagi b soni logarifm asosining kuchi sifatida berilmagan bo'lsa, u holda b sonining a c ko'rinishida tasvirini topish mumkinmi yoki yo'qligini diqqat bilan ko'rib chiqish kerak. Ko'pincha bu ko'rinish juda aniq, ayniqsa logarifm belgisi ostidagi raqam 1, yoki 2 yoki 3, ... kuchiga asosga teng bo'lsa.

Misol.

log 5 25, va logarifmlarini hisoblang.

Yechim.

25=5 2 ekanligini ko'rish oson, bu birinchi logarifmni hisoblash imkonini beradi: log 5 25=log 5 5 2 =2 .

Biz ikkinchi logarifmni hisoblashga o'tamiz. Raqam 7 ning darajasi sifatida ifodalanishi mumkin: (agar kerak bo'lsa, qarang). Binobarin, .

Uchinchi logarifmni quyidagi shaklda qayta yozamiz. Endi buni ko'rishingiz mumkin , shuning uchun biz shunday xulosaga keldik . Shuning uchun, logarifmning ta'rifi bo'yicha .

Qisqacha aytganda, yechim quyidagicha yozilishi mumkin:

Javob:

log 5 25=2 , va .

Etarlicha katta natural son logarifm belgisi ostida bo'lsa, uni tub omillarga ajratish zarar qilmaydi. Ko'pincha bunday raqamni logarifm asosining ba'zi bir kuchi sifatida ko'rsatishga yordam beradi va shuning uchun bu logarifmni ta'rifi bo'yicha hisoblash.

Misol.

Logarifmning qiymatini toping.

Yechim.

Logarifmlarning ayrim xossalari darhol logarifmlar qiymatini belgilash imkonini beradi. Bu xossalarga birning logarifmi xossasi va asosga teng sonning logarifmi xossasi kiradi: log 1 1=log a a 0 =0 va log a a=log a a 1 =1 . Ya'ni, 1 raqami yoki a soni logarifm belgisi ostida bo'lsa, logarifm asosiga teng bo'lsa, u holda bu hollarda logarifmalar mos ravishda 0 va 1 ga teng.

Misol.

Logarifmlar va lg10 nima?

Yechim.

Chunki , bu logarifmning ta'rifidan kelib chiqadi .

Ikkinchi misolda logarifm belgisi ostidagi 10 soni uning asosiga to'g'ri keladi, shuning uchun o'nlik o'nlik logarifmi birga teng, ya'ni lg10=lg10 1 =1 .

Javob:

Va lg10=1.

E'tibor bering, logarifmlarni ta'rifi bo'yicha hisoblash (bu haqda oldingi bandda muhokama qilgan edik) loggarifmlarning xususiyatlaridan biri bo'lgan log a a p =p tengligidan foydalanishni nazarda tutadi.

Amalda logarifm belgisi ostidagi son va logarifm asosi qandaydir sonning darajasi sifatida osonlik bilan ifodalansa, formuladan foydalanish juda qulaydir. , bu logarifmlarning xususiyatlaridan biriga mos keladi. Ushbu formuladan foydalanishni ko'rsatadigan logarifmni topish misolini ko'rib chiqing.

Misol.

ning logarifmini hisoblang.

Yechim.

Javob:

.

Hisoblashda yuqorida ko'rsatilmagan logarifmlarning xususiyatlari ham qo'llaniladi, ammo biz bu haqda keyingi paragraflarda gaplashamiz.

Boshqa ma'lum logarifmlar bo'yicha logarifmlarni topish

Ushbu banddagi ma'lumotlar logarifmlarning xossalarini hisoblashda foydalanish mavzusini davom ettiradi. Ammo bu erda asosiy farq shundaki, logarifmlarning xossalari dastlabki logarifmni qiymati ma'lum bo'lgan boshqa logarifm shaklida ifodalash uchun ishlatiladi. Aniqlik uchun misol keltiraylik. Aytaylik, log 2 3≈1.584963 ni bilamiz, keyin, masalan, log 2 6 ni logarifmning xossalaridan foydalanib, biroz o‘zgartirish orqali topishimiz mumkin: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Yuqoridagi misolda mahsulotning logarifmi xususiyatidan foydalanishimiz kifoya edi. Biroq, berilganlar bo'yicha asl logarifmni hisoblash uchun ko'pincha logarifmlar xususiyatlarining kengroq arsenalidan foydalanishga to'g'ri keladi.

Misol.

Agar log 60 2=a va log 60 5=b ekanligi ma’lum bo‘lsa, 27 ning 60 asosiga logarifmini hisoblang.

Yechim.

Shunday qilib, log 60 27 ni topishimiz kerak. 27=3 3 ekanligini va asl logarifmni daraja logarifmi xossasidan kelib chiqib, 3·log 60 3 shaklida qayta yozish mumkinligini tushunish oson.

Endi log 60 3 ni ma'lum logarifmlar orqali qanday ifodalash mumkinligini ko'rib chiqamiz. Bazaga teng son logarifmining xossasi 60 60=1 tenglik logini yozish imkonini beradi. Boshqa tomondan, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2 log 60 2+log 60 3+log 60 5 . Shunday qilib, 2 log 60 2+log 60 3+log 60 5=1. Binobarin, log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

Nihoyat, biz asl logarifmni hisoblaymiz: log 60 27=3 log 60 3= 3 (1−2 a−b)=3−6 a−3 b.

Javob:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Shaklning logarifmining yangi bazasiga o'tish formulasining ma'nosini alohida ta'kidlash kerak. . Bu sizga har qanday asosli logarifmlardan ma'lum bir asosli, qiymatlari ma'lum yoki ularni topish mumkin bo'lgan logarifmlarga o'tish imkonini beradi. Odatda, asl logarifmdan, o'tish formulasiga ko'ra, ular 2, e yoki 10 asoslaridan birida logarifmlarga o'tadilar, chunki bu asoslar uchun ularni ma'lum darajada aniqlik bilan hisoblash imkonini beruvchi logarifmlar jadvallari mavjud. Keyingi bo'limda biz buni qanday qilishni ko'rsatamiz.

Logarifmlar jadvallari, ulardan foydalanish

Logarifmlarning qiymatlarini taxminiy hisoblash uchun foydalanishingiz mumkin logarifm jadvallari. Eng ko'p qo'llaniladigan 2 ta asosiy logarifm jadvali, natural logarifm jadvali va o'nlik logarifm jadvali. O'nlik sanoq sistemasida ishlaganda, o'nlik asosini logarifmlar jadvalidan foydalanish qulay. Uning yordami bilan biz logarifmlarning qiymatlarini topishni o'rganamiz.










Taqdim etilgan jadval o'n mingdan bir aniqlik bilan 1000 dan 9,999 gacha (uchta kasr bilan) sonlarning o'nlik logarifmlarining qiymatlarini topishga imkon beradi. Biz o'nlik logarifmlar jadvalidan foydalanib, logarifm qiymatini topish tamoyilini aniq misol yordamida tahlil qilamiz - bu aniqroq. lg1,256 ni topamiz.

O'nlik logarifmlar jadvalining chap ustunida biz 1,256 raqamining birinchi ikkita raqamini topamiz, ya'ni 1,2 ni topamiz (aniqlik uchun bu raqam ko'k rangda aylana shaklida chizilgan). 1.256 raqamining uchinchi raqami (5-raqam) qo'sh chiziqning chap tomonidagi birinchi yoki oxirgi satrda joylashgan (bu raqam qizil rangda aylanada joylashgan). Dastlabki 1.256 raqamining to'rtinchi raqami (6-raqam) qo'sh chiziqning o'ng tomonidagi birinchi yoki oxirgi qatorda joylashgan (bu raqam yashil rangda aylanalangan). Endi biz logarifmlar jadvalining katakchalaridagi raqamlarni belgilangan qator va belgilangan ustunlar kesishmasida topamiz (bu raqamlar to'q sariq rang bilan ajratilgan). Belgilangan raqamlar yig'indisi to'rtinchi kasrgacha bo'lgan o'nlik logarifmning kerakli qiymatini beradi, ya'ni log1,236≈0,0969+0,0021=0,0990.

Yuqoridagi jadvaldan foydalanib, kasrdan keyin uchtadan ortiq raqamga ega bo'lgan raqamlarning o'nlik logarifmlarining qiymatlarini topish va 1 dan 9,999 gacha bo'lgan chegaralardan tashqariga chiqish mumkinmi? Ha mumkin. Keling, bu qanday amalga oshirilishini misol bilan ko'rsatamiz.

Keling, hisoblab chiqamiz lg102.76332 . Avval siz yozishingiz kerak standart shakldagi raqam: 102.76332=1.0276332 10 2 . Shundan so'ng, mantisni uchinchi kasrgacha yaxlitlash kerak, bizda bor 1,0276332 10 2 ≈1,028 10 2, asl o'nlik logarifm taxminan olingan sonning logarifmiga teng bo'lsa, ya'ni lg102,76332≈lg1,028·10 2 ni olamiz. Endi logarifmning xususiyatlarini qo'llang: lg1.028 10 2 =lg1.028+lg10 2 =lg1.028+2. Nihoyat, lg1.028 oʻnlik logarifmlar jadvali boʻyicha lg1.028≈0.0086+0.0034=0.012 qiymatini topamiz. Natijada, logarifmni hisoblashning butun jarayoni quyidagicha ko'rinadi: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

Xulosa qilib shuni ta'kidlash kerakki, o'nlik logarifmlar jadvalidan foydalanib, har qanday logarifmning taxminiy qiymatini hisoblashingiz mumkin. Buning uchun o'nlik logarifmlarga o'tish, jadvalda ularning qiymatlarini topish va qolgan hisob-kitoblarni bajarish uchun o'tish formulasidan foydalanish kifoya.

Masalan, log 2 3 ni hisoblab chiqamiz. Logarifmning yangi bazasiga o'tish formulasiga ko'ra, bizda mavjud. O'nli logarifmlar jadvalidan lg3≈0,4771 va lg2≈0,3010 ni topamiz. Shunday qilib, .

Adabiyotlar ro'yxati.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. va boshqalar.Algebra va tahlilning boshlanishi: Umumta’lim muassasalarining 10-11-sinflari uchun darslik.
  • Gusev V.A., Mordkovich A.G. Matematika (texnika maktablariga abituriyentlar uchun qo'llanma).


xato: Kontent himoyalangan !!