Христиан гюйгенс открытия. Галилео галилей, пизанская башня и маятниковые часы

Часы Гюйгенса с маятниковым регулятором и шпиндельным спуском

Самые значительные усовершенствования в механизм часов были внесены во второй половине 17 века знаменитым голландским физиком Гюйгенсом, создавшим новые регуляторы как для пружинных так и для гиревых часов. Использовавшееся до этого в течении нескольких веков коромысло имело много недостатков. Его даже трудно назвать регулятором в собственном смысле этого слова. Ведь регулятор должен быть способен к самостоятельным колебаниям с собственной частотой. Коромысло же было, вообще говоря, только маховиком. Множество посторонних факторов влияло на его работу, что отражалось на точности хода часов. Механизм стал гораздо совершеннее, когда в качестве регулятора стал использоваться маятник.

Впервые мысль применить маятник в простейших приборах для измерения времени пришла великому итальянскому ученому Галилео Галилею. Сохранилось предание, что в 1583 г. девятнадцатилетний Галилей, находясь в Пизанском соборе, обратил внимание на раскачивание люстры. Он заметил, отсчитывая удары пульса, что время одного колебания люстры остается постоянным, хотя размах делается все меньше и меньше. Позже, приступив к серьезному изучению маятников, Галилей установил, что при малом размахе (амплитуде) раскачивания (всего несколько градусов) период колебания маятника зависит только от его длины и имеет постоянную длительность. Такие колебания стали называть изохронными. Очень важно, что при изохронных колебаниях период колебания маятника не зависит от его массы. Благодаря этому свойству маятник оказался очень удобным прибором для измерения небольших отрезков времени. На его основе Галилей разработал несколько простых счетчиков, которые использовал при проведении своих экспериментов. Но из-за постепенного затухания колебаний, маятник не мог служить для измерения длительных промежутков времени.

Создание маятниковых часов состояло в соединении маятника с устройством для поддержания его колебаний и их отсчета. В конце жизни Галилей стал конструировать такие часы, но дальше разработок дело не пошло. Первые маятниковые часы были созданы уже после смерти великого ученого его сыном. Однако устройство этих часов держалось в строгом секрете, поэтому они не оказали никакого влияния на развитие техники. Независимо от Галилея в 1657 г. механические часы с маятником собрал Гюйгенс. При замене коромысла на маятник первые конструкторы столкнулись со сложной проблемой: как уже говорилось, маятник создает изохронные колебания только при малой амплитуде, между тем, шпиндельный спуск требовал большого размаха. В первых часах Гюйгенса размах маятника достигал 40-50 градусов, что неблагоприятно сказывалось на точности хода. Чтобы компенсировать этот недостаток, Гюйгенсу пришлось проявить чудеса изобретательности. В конце концов он создал особый маятник, который в ходе качания изменял свою длину и колебался по циклоидной кривой. Часы Гюйгенса обладали несравнимо большей точностью, чем часы с
коромыслом. Их суточная погрешность не превышала 10 секунд (в часах с коромысловым регулятором погрешность колебалась от 15 до 60 минут).

(1663), член Французской академии наук с момента её основания (1666) и её первый президент (1666-1681) .

Христиан Гюйгенс
Christiaan Huygens
Дата рождения 14 апреля (1629-04-14 ) […]
Место рождения
Дата смерти 8 июля (1695-07-08 ) […] (66 лет) или 8 июня (1695-06-08 ) (66 лет)
Место смерти
Страна
Научная сфера математика , механика , физика , астрономия
Место работы Французская Академия наук
Альма-матер Лейденский университет
Научный руководитель Франс ван Схотен
Jan Jansz de Jonge Stampioen
Известные ученики Готфрид Лейбниц , Дени Папен
Известен как один из основоположников теоретической механики
Христиан Гюйгенс на Викискладе

Биография

Молодой Гюйгенс изучал право и математику в Лейденском университете , затем решил посвятить себя науке. В 1651 году опубликовал «Рассуждения о квадратуре гиперболы , эллипса и круга ». Вместе с братом он усовершенствовал телескоп , доведя его до 92-кратного увеличения, и занялся изучением неба. Первая известность пришла к Гюйгенсу, когда он открыл кольца Сатурна (Галилей их тоже видел, но не смог понять, что это такое) и спутник этой планеты, Титан .

В 1657 году Гюйгенс получил голландский патент на конструкцию маятниковых часов. В последние годы жизни этот механизм пытался создать Галилей , но ему помешала прогрессирующая слепота. Часы на основе маятника пытались создать и другие изобретатели, однако надёжную и недорогую конструкцию, пригодную для массового применения, первым нашёл Гюйгенс, его часы реально работали и обеспечивали превосходную для того времени точность хода . Центральным элементом конструкции был придуманный Гюйгенсом якорь, который периодически подталкивал маятник и поддерживал равномерные, незатухающие колебания. Сконструированные Гюйгенсом часы с маятником быстро получили широчайшее распространение по всему миру. В 1673 году под названием «Маятниковые часы» вышел чрезвычайно содержательный трактат Гюйгенса по кинематике ускоренного движения . Эта книга была настольной у Ньютона , который завершил начатое Галилеем и продолженное Гюйгенсом построение фундамента механики .

В 1661 году Гюйгенс совершил поездку в Англию. В 1665 году по приглашению Кольбера поселился в Париже , где в 1666 году была создана Парижская Академия наук . По предложению того же Кольбера Гюйгенс стал её первым президентом и руководил Академией 15 лет. В 1681 году, в связи с намеченной отменой Нантского эдикта , Гюйгенс, не желая переходить в католицизм, вернулся в Голландию, где продолжил свои научные исследования. В начале 1690-х годов здоровье учёного стало ухудшаться, он умер в 1695 году. Последним трудом Гюйгенса стал «Космотеорос», в нём он аргументировал возможность жизни на других планетах .

Научная деятельность

Математика

Научную деятельность Христиан Гюйгенс начал в 1651 году сочинением о квадратуре гиперболы , эллипса и круга . В 1654 году он разработал общую теорию эволют и эвольвент , исследовал циклоиду и цепную линию , продвинул теорию непрерывных дробей .

В 1657 году Гюйгенс написал приложение «О расчётах в азартной игре » к книге его учителя ван Схоотена «Математические этюды». Это было первое изложение начал зарождающейся тогда теории вероятностей . Гюйгенс, наряду с Ферма и Паскалем , заложил её основы, ввёл фундаментальное понятие математического ожидания . По этой книге знакомился с теорией вероятностей Якоб Бернулли , который и завершил создание основ теории .

Механика

В 1657 году Гюйгенс издал описание устройства изобретённых им часов с маятником . В то время учёные не располагали таким необходимым для экспериментов прибором, как точные часы. Галилей , например, при изучении законов падения считал удары собственного пульса. Часы с колесами, приводимыми в движение гирями, были в употреблении с давнего времени, но точность их была неудовлетворительна. Маятник же со времен Галилея употребляли отдельно для точного измерения небольших промежутков времени, причём приходилось вести счёт числу качаний. Часы Гюйгенса обладали хорошей точностью, и учёный далее неоднократно, на протяжении почти 40 лет, обращался к своему изобретению, совершенствуя его и изучая свойства маятника. Гюйгенс намеревался применить маятниковые часы для решения задачи определения долготы на море, но существенного продвижения не добился. Надёжный и точный морской хронометр появился только в 1735 году (в Великобритании) .

В 1673 году Гюйгенс опубликовал классический труд по механике «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica »). Скромное название не должно вводить в заблуждение. Кроме теории часов, сочинение содержало множество первоклассных открытий в области анализа и теоретической механики . Гюйгенс также проводит там квадратуру ряда поверхностей вращения. Это и другие его сочинения имели огромное влияние на молодого Ньютона .

В первой части труда Гюйгенс описывает усовершенствованный, циклоидальный маятник, который обладает постоянным временем качания независимо от амплитуды . Для объяснения этого свойства автор посвящает вторую часть книги выводу общих законов движения тел в поле тяжести - свободных, движущихся по наклонной плоскости, скатывающихся по циклоиде . Надо сказать, что это усовершенствование не нашло практического применения, поскольку при малых колебаниях повышение точности от циклоидального привеса незначительно. Однако сама методика исследования вошла в золотой фонд науки .

В третьей части сочинения излагается теория эволют и эвольвент , открытая автором ещё в 1654 году; здесь он находит вид и положение эволюты циклоиды . В четвёртой части излагается теория физического маятника; здесь Гюйгенс решает ту задачу, которая не давалась стольким современным ему геометрам, - задачу об определении центра качаний. Он основывается на следующем предложении :

Если сложный маятник, выйдя из покоя, совершил некоторую часть своего качания, большую полуразмаха, и если связь между всеми его частицами будет уничтожена, то каждая из этих частиц поднимется на такую высоту, что общий центр тяжести их при этом будет на той высоте, на которой он был при выходе маятника из покоя.

Это предложение, не доказанное у Гюйгенса, является у него в качестве основного начала, между тем как теперь оно представляет простое следствие закона сохранения энергии .

Теория физического маятника дана Гюйгенсом вполне в общем виде и в применении к телам разного рода. Гюйгенс исправил ошибку Галилея и показал, что провозглашённая последним изохронность колебаний маятника имеет место лишь приближённо. Он отметил также ещё две ошибки Галилея в кинематике : равномерное движение по окружности связано с ускорением (Галилей это отрицал), а центробежная сила пропорциональна не скорости, а квадрату скорости .

В последней, пятой части своего сочинения Гюйгенс дает тринадцать теорем о центробежной силе . Эта глава даёт впервые точное количественное выражение для центробежной силы, которое впоследствии сыграло важную роль для исследования движения планет и открытия закона всемирного тяготения . Гюйгенс приводит в ней (словесно) несколько фундаментальных формул :

Астрономия

Гюйгенс самостоятельно усовершенствовал телескоп; в 1655 году он открыл спутник Сатурна Титан и описал кольца Сатурна . В 1659-м он описал всю систему Сатурна в изданном им сочинении .

В 1672 году он обнаружил ледяную шапку на Южном полюсе Марса . Он подробно описал туманность Ориона и другие туманности, наблюдал двойные звёзды, оценил (довольно точно) период вращения Марса вокруг оси.

Последняя книга «ΚΟΣΜΟΘΕΩΡΟΣ sive de terris coelestibus earumque ornatu conjecturae» (на латинском языке; опубликована посмертно в Гааге в 1698 году) - философско-астрономическое размышление о Вселенной. Полагал, что другие планеты также населены людьми. Книга Гюйгенса получила широчайшее распространение в Европе, где была переведена на английский (1698), голландский (1699), французский (1702), немецкий (1703), русский (1717) и шведский (1774) языки. На русский язык по указу Петра I была переведена Яковом Брюсом под названием «Книга мирозрения». Считается первой в России книгой, где излагается гелиоцентрическая система Коперника .

В этом труде Гюйгенс сделал первую (наряду с Джеймсом Грегори) попытку определить расстояние до звёзд. Если предположить, что все звёзды, включая Солнце, имеют близкую светимость, то, сравнивая их видимую яркость, можно грубо оценить отношение расстояний до них (расстояние до Солнца было тогда уже известно с достаточной точностью). Для Сириуса Гюйгенс получил расстояние в 28000 астрономических единиц , что примерно в 20 раз меньше истинного (опубликовано посмертно, в 1698 году) .

Оптика и теория волн

Гюйгенс участвовал в современных ему спорах о природе света. В 1678 году он выпустил «Трактат о свете

13/05/2002

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее.

Часы из телевизора
Перед любыми программами новостей на телевидении мы видим часы, секундная стрелка которых с большим достоинством отсчитывает последние мгновения до начала передачи. Этот циферблат - видимая часть айсберга под названием АЧФ-3, астрономические часы Федченко. Не каждый прибор носит имя конструктора, не обо всех изобретениях сообщают в энциклопедиях.

Часы Феодосия Михайловича Федченко удостоены такой чести. В любой другой стране об изобретателе подобного уровня знал бы каждый школьник. А у нас уже 11 лет назад тихо и скромно ушел из жизни выдающийся конструктор и никто о нем даже вспоминает. Почему? Наверное, в свое время был упрям, не умел льстить и лицемерить, что так не нравилось чиновникам от науки.
Помогла изобрести Федченко знаменитые часы случайность. Одна из тех загадочных случайностей, которая так украшает историю науки.

Две первые точки в истории маятниковых часов поставили два великих ученых - Галилео Галилей и Христиан Гюйгенс независимо друг от друга, создавшие часы с маятником, причем открытие законов колебания маятника пришло к Галилею тоже случайно. Кому-то на голову упадет кирпич -и ничего, даже сотрясения мозга не произойдет, а другому достаточно простого яблока, чтобы разбудить дремавшую в подсознании мысль для открытия закона всемирного тяготения. Великие случайности происходят, как правило, с великими личностями.

В 1583 году в Пизанском соборе любознательный юноша по имени Галилео Галилей не столько слушал проповедь, сколько любовался движением люстр. Наблюдения за светильниками показались ему интересными и, вернувшись домой, девятнадцатилетний Галилей изготовил опытную установку для исследования колебаний маятников - свинцовых шариков, укрепленных на тонких нитях. Собственный пульс служил ему хорошим секундомером.

Так, экспериментальным путем, Галилео Галилей открыл законы колебания маятника, которые сегодня изучают в каждой школе. Но Галилей в то время был слишком молод, чтобы думать о внедрении в жизнь своего изобретения. Вокруг столько интересного, надо спешить. И только в конце жизни, старый, больной и слепой старик, вспомнил о своих юношеских опытах. И его осенило - приставить к маятнику счетчик колебаний, - и получатся точные часы! Но силы Галилея были уже не те, ученый смог сделать только чертеж часов, завершил же работу его сын Винченцо, который вскоре умер и широкой огласки создание маятниковых часов Галилеем не получило.

Впоследствии Христиану Гюйгенсу всю жизнь необходимо было доказывать, что именно ему принадлежит честь создания первых маятниковых часов. По этому поводу в 1673 году он писал:
"Некоторые утверждают, что Галилей пытался сделать это изобретение, но не довел дело до конца; эти лица скорее уменьшают славу Галилея, чем мою, так как выходит, что я с большим успехом, чем он, выполнил ту же задачу".

Не так уж важно кто из этих двух великих ученых "первее" в деле создания часов с маятником. Гораздо значительнее то, что Христиан Гюйгенс не просто изготовил очередной тип часов, он создал науку хронометрию. С этого времени в деле конструирования часов был наведен порядок. "Лошадь" (практика) уже не бежала впереди "паровоза" (теории). Идеи Гюйгенса воплощал в жизнь парижский часовой мастер Исаак Тюре. Так увидели свет часы с различными конструкциями маятников, изобретенных Гюйгенсом.

Начало "карьеры" учителя физики
Феодосии Михайлович Федченко, родившийся в 1911 году ничего не знал о страстях по маятнику трехсотлетней давности. Да и вообще о часах он не думал. Его "карьера" началась в бедной сельской школе. Простой учитель физики вынужден был стать невольным изобретателем. Как же иначе, не имея должного оборудования, объяснить любознательным детишкам основополагающие законы природы.

Талантливый педагог конструировал сложные демонстрационные установки и, вероятно, его уроки школьники не пропускали. Война внесла коррективу в судьбу молодого изобретателя, Федченко стал незаурядным механиком танковых приборов. И вот первый звоночек судьбы - после окончания войны Феодосию Михайловичу предложили работу в Харьковском институте мер и измерительных приборов, в лаборатории, где среди научных тем была записана и такая: "Изыскание возможности увеличения точности хода часов со свободным маятником типа "Шорт"".

Его настольной книгой стал "Трактат о часах" Христиана Гюйгенса. Так заочно познакомился Ф. М. Федченко со своими знаменитыми предшественниками Христианом Гюйгенсом и Вильгельмом X. Шортом.

Предпоследняя точка в истории часов с маятником была поставлена английским ученым Вильгельмом X. Шортом. Правда, долгое время считалось, что создать часы с маятником точнее, чем часы Шорта невозможно. В 20-е годы XX века решили, что эволюция маятниковых приборов времени завершена. Каждая обсерватория не считалась достаточно оснащенной, если не имела астрономических часов Шорта, но платить за них приходилось золотом.

Один экземпляр часов Шорта приобрела Пулковская обсерватория. Английская фирма, установившая хранитель времени, запрещала к ним даже прикасаться, иначе снимала с себя всякую ответственность за настройку хитрого механизма. В 30-е годы Главной палате мер и весов в Ленинграде поручили разгадать секрет часов Шорта и начать изготавливать подобные устройства собственными силами. Талантливый метролог И. И. Кванберг долго разглядывал механизм часов через герметическое стекло цилиндра и попытался, не имея чертежей, изготовить копию. Копия была достаточно хорошей, но не идеальной. Всех английских тонкостей через стекло разглядеть было невозможно. Тем не менее, до войны на заводе "Эталон" было выпущено несколько экземпляров часов Кванберга.
Вот такую "простенькую" тему - изготовить часы точнее, чем это сделал Шорт - и поручили новичку Ф. М. Федченко, пришедшему после войны в харьковский институт.

Возвращение к истокам
Харьковский умелец установил, что еще в 1673 году Христиан Гюйгенс в "Трактате о часах" практически все сказал о том, как делать маятниковые часы. Оказывается, для того, чтобы часы были точными, необходимо, чтобы центр тяжести маятника в пространстве описывал не дугу окружности, а часть циклоиды: кривой, по которой движется точка на ободе колеса, катящегося по дороге. В этом случае колебания маятника будут изохронными, не зависящими от амплитуды. Сам Гюйгенс теоретически все обосновавший, пытался достичь цели, делая тысячи изобретений, но к идеалу не приблизился.

Последователи Гюйгенса, в том числе и Шорт, добивались точности другим путем -максимально изолировали маятник от внешних влияний, помещая точные часы глубоко в подвал, в вакуум, где минимально изменяется вибрация, температура
Федченко же, захотел осуществить мечту Гюйгенса и создать изохронный маятник. Говорят, что все идеальное - просто. Так и Федченко всего на всего подвесил маятник на три пружины - две длинные - по бокам и одну короткую - в середине. Казалось бы, ничего особенного, но на пути к открытию, были тысячи опытов. Были перепробованы пружины толстые и тонкие, длинные и короткие, плоские и с переменным сечением. Пять долгих лет терпеливой и кропотливой работы, неверие коллег, на него уже просто перестали обращать внимание и вдруг счастливый случай, благодаря элементарной ошибке в сборке подвеса.

Несколько винтов плохо закрутили, и подвес повел себя так, что маятник начал совершать изохронные колебания. Опыты проверяли и перепроверяли, все оставалось по-прежнему. Трех пружинный подвес маятника решал задачу Гюйгенса - при изменении амплитуды колебания, период оставался неизменным.
Столица, конечно, переманила талантливого изобретателя. В 1953 году Ф.М. Федченко перевели в Москву, в лабораторию маятниковых приборов времени создававшегося Всесоюзного научно-исследовательского института физико-технических и радиотехнических измерений.

Конечно, в Харькове это не понравилось. Федченко нанесли удар ниже пояса, - не отдали высокоточный импортный станок, стоивший громадных денег. В Москву изобретатель привез только три экземпляра первых опытных часов АЧФ-1. Для продолжения работы станок был необходим, в магазинах страны подобное оборудование не продавали. У частников, с трудом, но можно было найти нужный станок, и Федченко нашел. Но как платить? Наличные деньги в государственном учреждении не выдавали, тем более такую сумму -одиннадцать тысяч рублей.

Отчаявшийся Федченко, понимая, что без прецизионного оборудования он, как без рук, пошел на настоящую авантюру. Он напрямую обратился к управляющему Госбанка и нашел такие убедительные слова о значение своего изобретения, что умный и смелый человек, профессионал в своем деле, поверив мастеру, выдал ему нужную сумму наличными, в качестве документа потребовав просто расписку. Это один из примеров "очевидного, но невероятного".

Еще несколько десятилетий совершенствовали механизм астрономических часов Федченко, пока не появилась знаменитая модель - "АЧФ-3", принесшая славу, как автору, так и стране. Высокоточные часы демонстрировались на Всемирной выставке в Монреале, награждены медалями ВДНХ; описания часов включены в энциклопедии и в различные серьезные издания по хронометрии.

Блеск и трагедия изобретения Федченко
Ф. М. Федченко - создал высокоточные электронно-механические маятниковые часы в то время, когда уже начали появляться кварцевые, молекулярные и атомные приборы времени. Эти системы нельзя сравнивать. Каждая выполняет свои конкретные задачи и в своей области незаменима. Но, к сожалению, не все это понимают. Феодосии Михайлович Федченко никогда не был обделен вниманием ученых, своих коллег. Но вот чиновники, от которых часто зависит как судьба самого изобретателя, так и его изобретения, не всегда ведают, что творят.

В Госстандарте СССР относились к знаменитому конструктору прохладно. В 1973 году ВНИИФТРИ предложил выплатить изобретателю достойное вознаграждение за более чем двадцатипятилетнюю работу по созданию отечественных астрономических часов, принесших стране громадный экономический эффект и независимость от импорта прецизионных часовых механизмов. В Госстандарте сочли возможным урезать предложенное вознаграждение в 9 раз, сославшись на то, что "точность хода часов АЧФ-3 ниже действующих атомных часов". Конечно, ниже. Но атомные часы одни на всю страну, их обслуживает целый коллектив сотрудников, это Государственный эталон времени и частоты, а у часов Федченко совершенно другое назначение - это хранители времени. До сих пор часами Федченко оснащены многие телецентры, аэропорты, космодромы, обсерватории.

Разве кто-нибудь додумается сравнивать по скорости велосипед и космическую ракету. А в Госстандарте сравнили маятниковые часы Федченко, дающие погрешность в одну секунду за 15 лет с атомными часами, ошибающимися на ту же секунду за триста тысяч лет. Оценивать можно только аналогичного класса системы. Например, часы Федченко по сравнению с часами Шорта, намного дешевле, экономичнее, надежнее, удобнее в эксплуатации и на порядок точнее. Не будем обращать внимания на недальновидных и недобросовестных чиновников всех рангов. Главное, запомним, и будем гордиться, что наш соотечественник Феодосии Михайлович Федченко поставил последнюю точку в развитии маятниковых часов. Послушайте, как это гордо звучит - от Галилея и Гюйгенса до Федченко!

Мастер, конечно, знал цену себе и знал, что найдутся злопыхатели, которые попытаются умалить значение его изобретения. Чтобы не забыли о деле всей его жизни, Федченко сам пришел в 1970 году в Политехнический музей с предложением принять в дар и экспонировать часы его конструкции. Сегодня в маленьком зале московского музея можно увидеть многие шедевры часового искусства, в том числе и часы - изобретателя с большой буквы - Феодосия Михайловича Федченко

1. РЕНЕ ДЕКАРТ

Изучение физики, согласно Декарту (1596-1650), должно иметь цель сделать людей «господами и хозяевами природы». Этого господства над природой человек может достичь, применив к физическому исследованию методы математики, наиболее совершенной из известных ему наук. Поэтому Декарт поставил себе задачей математизацию физики, или, точнее, ее геометризацию по типу евклидовой геометрии: небольшое число аксиом, само собой очевидных, на которые опирается упорядоченная последовательность выводов, обладающих той же степенью достоверности, что и первичные аксиомы.

Принимая галилееву концепцию вторичных качеств, заключенных не в телах, а в ощущающем субъекте, Декарт кладет в основу своего рассмотрения лишь две сущности - протяженность и движение, которые представляются ему интуитивно понятными, и, будучи убежден в невозможности существования пустоты в природе, наполняет протяженность «тонкой материей», которую бог наделил непрерывным движением.

Физический мир состоит, таким образом, только из двух сущностей:, материи, простой «протяженности, наделенной формой», лишенной всех качеств, кроме геометрических, и движения. Следовательно, достаточно будет установить законы движения, чтобы вывести затем с помощью ряда последовательных теорем законы чувственного мира.

В своем трактате «Le monde» («Мир») Декарт не упоминает об относительности движения. Но в «Principia philosophiae» («Начала философии»), опубликованных в 1644 г., т. е. после появления «Диалога о двух главнейших системах мира», он, возможно под влиянием этого труда Галилея, принимает принцип относительности, делая все же для осторожности ряд оговорок, позволяющих ему формально не вступать в противоречие с положением о неподвижности Земли, требуемым священным писанием. Но если бы» страх перед инквизицией не заставлял его скрывать свои мысли, Декарт дал бы более широкое понятие относительности, чем Галилей. Действительно, Галилей, а позже Ньютон верили в абсолютное движение по отношению к пространству, тогда как Декарт утверждал относительный его характер. В частной переписке он писал:

«Если из двух человек один движется с кораблем, а второй стоит неподвижно на берегу..., то нет никакого преимущества ни в движении первого, ни в покое второго» (Oeuvres de Descartes, publiees par Charles Adam et Paul Tannery, Paris, 1902, v. VL, p. 348. (Есть русский перевод: Р. Декарт, Избранные произведения, М., 1950.) ).

Декартова механика основана на трех законах. Два первых охватывают то, что сейчас называется принципом инерции. Третий закон утверждает постоянство количества движения (произведение массы тела, которую Декарт путал с весом, на его скорость). Декарт полагает также количество движения равным произведению приложенной силы на время ее действия и называет это произведение импульсом силы; это название сохранилось в науке и сейчас в том же значении. Третий закон Декарта является по существу центральным пунктом его механики. То, что Декарт сумел выделить его и положить в основу своей механики, говорит о незаурядной интуиции автора.

К сожалению, в формулировке этого закона Декарт допускает ошибку, весьма странную для геометра его масштаба. Он не учитывает, что поскольку скорость, как мы бы сейчас сказали и как знал Декарт, является вектором, т. е. величиной, имеющей направление и ориентацию, то и количества движения являются векторами, так что их сумму нужно понимать в геометрическом, а не в алгебраическом смысле. Таким образом, формулировка третьего закона ошибочна. Отсюда неверность вытекающих из него семи правил (за исключением первого), образующих декартову теорию соударения упругих тел.

Некоторые случаи соударения, исследованные Декартом, легко проверяются на опыте. Например, четвертое декартово правило гласит, что если неподвижное тело испытывает центральное соударение с другим телом меньшей массы, то оно остается неподвижным, тогда как движущееся тело меняет направление скорости на обратное с сохранением абсолютной величины скорости. Но достаточно подойти к бильярдному столу, чтобы убедиться в ошибочности этого правила. И Декарт действительно это сделал и установил неверность своих правил. Но он слишком доверял своему разуму и своим «ясным и четким» идеям. Опыт опровергает теоретические построения? Тем хуже для опыта. Опыт не удается, говорит с уверенностью Декарт, потому что эти правила предполагают,

«что тела идеально твердые и настолько удалены от всех остальных тел, что ни одно из этих тел не может способствовать или препятствовать их движению» (Oeuvres de Descartes, v. IX, p. 93 ).

Но даже если признать это объяснение правильным, как же мы сможем стать хозяевами природы, располагая физикой, говорящей о явлениях имеющих место в ином мире, а не в том, в котором мы существуем?

Установив законы движения, Декарт в трактате «Мир» и в «Началах философии» начинает свой космологический роман, объясняя образование Солнца, планет, комет. Наконец, он спускается с неба на Землю и устанавливает, что тонкая материя обладает тремя действиями: светом, теплом и тяготением. Этим он создает основы того представления о флюидах, которое господствовало в физике в течение всего XVIII и частично в XIX веке. Эти удобные флюиды, которые, подобно добрым гномам, готовы к услугам в наиболее трудных случаях и скромно действуют скрытно от наших чувств, не представляют ли они, по крайней мере частично, возврат назад, к оккультизму? По нашему мнению, это так.

Но всегда нужно помнить, что представление о флюидах оказало физике также громадные услуги, особенно в оптике и теории электричества. При этом мы имеем в виду научную концепцию, временное модельное представление, инструмент механистической философии, но не конкретные флюиды, введенные Декартом, как, например, его магнитный флюид, состоящий из двух типов частиц спиральной формы с тремя витками, навитыми в противоположные стороны. С его помощью Декарт дал ответ на 34 вопроса, которые можно, по его мнению, задать по магнетизму. Этот магнитный флюид и эта вызывающая восхищение цепь рассуждений на протяжении всех «Начал» свидетельствуют об искусстве Декарта в построении гипотетических дедуктивных систем, но ни на йоту не обогащают наших знаний о магнитных явлениях.

Совсем иную роль сыграло декартово понятие тяжести. Каждое тело находится, по Декарту, в вихре, будучи окруженным в свою очередь другими вихрями, которые прижимают его к центру. Это стремление к центру и составляет вес тела, т. е. тяжесть. Если бы Галилей это знал, сказал Декарт в известном письме к Мерсенну, ему не нужно было бы строить безосновательную теорию падения тел в пустоте.

Письмо Декарта, которое мы уже упоминали выше, представляет собой резкую критику «Беседы, касающейся двух новых отраслей науки» Галилея и интересно с точки зрения различия мышления обоих ученых: для Декарта физика должна искать ответ на вопрос, почему происходят явления, по Галилею - исследовать, как они происходят; поиски причины - цель Декарта, описание явлений - цель Галилея. В вопросе падения тяжелых тел Декарт не соглашался с законами Галилея и не понимал их, в частности, потому, что его кинематике было чуждо понятие ускорения.

Вес, как и любую силу, Декарт понимал как реакцию связей геометрического типа. Это - свойство движения тонкой материи. Так что, отождествляя ее с пространством и пользуясь более понятной сейчас терминологией, можно сказать, что вес есть свойство пространства. Но к такому пониманию картезианство никогда не склонялось, и потому оно пало, побежденное приверженцами ньютонова притяжения, несмотря на защиту со стороны Гюйгенса и Лейбница, которые обратили внимание на то, что ньютоново понимание притяжения, воспринявшее кеплерово понятие prensatio или vis prensandi, заключенной в теле, представляет собой неявное возвращение к оккультным свойствам схоластики, потому что в конце концов, для того чтобы тело А притягивало тело 5, нужно, чтобы оно знало, где находится тело В.

Обычно говорят, что декартово понимание физики механистично. Но понимание Галилея и Ньютона тоже было механистичным, потому что под механицизмом понимаются все иногда противоречащие друг другу теории, которые объясняют все физические явления с помощью системы движений, подобных движению механизма. Нам представляется, что механицизм Декарта отличается от механицизма Галилея - Ньютона двумя существенными чертами. Первое, более очевидное, отличие только что отмечалось - это понятие силы. Для Галилея и Ньютона сила - это физическая реальность, не сводимая к свойствам пространства и движения; для Декарта же сила, как мы видели, - это свойство пространства. Механицизм Декарта противостоит динамизму Ньютона, доведенному до крайнего предела Рожером Босковичем в XVIII и Майклом Фарадеем в XIX веке. Согласно этим динамистам, непосредственно данной является сила; так называемая материя исчезает, а ее «почтенные качества», как называл их Оствальд, суть не что иное, как свойства полей сил в пустом пространстве. Но механицизм Декарта противостоит также и атомизму, согласно которому именно атомы создают поля сил, а их скрытые движения объясняют все физические процессы. Очевидно, декартово учение, отождествляющее вещество с протяженностью, не могло быть атомистическим в традиционном демокритовом смысле слова.

2. УЧЕНИКИ ГАЛИЛЕЯ

Джакомо Леопарди приписывает Копернику слова, что подтверждение гелиоцентрической системы

«... не будет таким простым делом, как могло бы показаться на первый взгляд... Ее влияние не ограничится физикой. Она приведет к переоценке ценностей и взаимоотношений различных категорий] она изменит взгляд на цели творения. Тем самым она произведет переворот также и в метафизике и вообще во всех областях, соприкасающихся с умозрительной стороной знания. Отсюда следует, что люди, если сумеют или захотят рассуждать здраво, окажутся совсем в другом положении, чем они были до сих пор или воображали, что были» (Giacomo Leopard i, Le operette morali, Livorno, 1870, p. 314, с предисловием Пьетро Джордани, издание исправленное и дополненное Дж. Кьярини ).

Этот полный переворот в образе мыслей, так хорошо понятый Леопарди, вполне можно отнести и к физическим исследованиям, проведенным после Галилея. Правда, не было недостатка и в противниках нового метода исследования, особенно усердствовавших после осуждения Галилея, но значительная часть их вынуждена была отвечать на наблюдения другими наблюдениями, на опыты - другими опытами, на математические доказательства - другими математическими доказательствами. Вынужденные, таким образом, исследовать вещи, а не труды Аристотеля, перипатетики этого периода также помогли, хотя и косвенно, отказу от слепой веры в авторитеты и облегчили труд ученикам Галилея.

К числу учеников Галилея мы относим не только тех, кто из его собственных уст воспринимал новую науку, но и его многочисленных корреспондентов, а также первое поколение ученых, научное мировоззрение которых формировалось на его трудах. В этом смысле Галилей имел много учеников не только в Италии, но и за ее пределами, особенно во Франции, прежде всего благодаря деятельности Марена Мерсенна (1588-1648), который, как мы уже говорили, перевел в 1634 г. «Механику» Галилея. Позже, когда переиздание и перевод «Диалога о двух главнейших системах» были запрещены, Мерсенн составил для своих соотечественников краткое изложение этой работы и распространил во Франции исследования Галилея по падению тяжелых тел; он был первым среди ученых того времени, кто поддерживал точку зрения о субъективном характере ощущений. Хотя в труде Мерсенна мы бы напрасно искали оригинальные идеи, он все же сыграл важную роль в распространении новой науки, информируя о работах других ученых, комментируя и пересказывая их, а иногда издавая полностью. Поэтому труды Мерсенна представляют собой неисчерпаемый источник сведений об уровне знаний в ту бурную эпоху. Неутомимый корреспондент крупнейших ученых того времени, Мерсенн информировал других, сам получал информацию, ставил проблемы, выдвигал возражения, выполняя, таким образом, функции сбора и распространения знаний, возложенные сейчас на большие международные научные журналы.

3. ЭВАНДЖЕЛИСТА ТОРРИЧЕЛЛИ

В апреле 1641 г. Бенедетто Кастелли (1577-1644), профессор математики Римского университета и в прошлом ученик Галилея, посетил своего учителя, жившего тогда в Арчетри, и привез ему на просмотр рукопись о движении свободно падающих тел. Ее автором был Эванджелиста Торричелли (1608-1647), ученик Кастелли. Кастелли предложил Галилею взять Торричелли к себе в дом в качестве помощника в подготовке исследований по механике. Получив согласие Галилея, Торричелли в первой половине августа того же года переехал к нему в Арчетри. Но их сотрудничество продолжалось всего три месяца. Галилей умер. Великий герцог Тосканский, прибывший в Арчетри в связи со смертью Галилея, назначил Торричелли на ставшую вакантной должность придворного математика.

Научная деятельность Торричелли, бесспорно, самого блестящего ученика Галилея, относится к области физики и математики. Однако, следуя примеру своего учителя, он не гнушается и практической деятельности. Узнав от Галилея о значении изготовления линз и подзорных труб, он с 1642 г. стал упорно заниматься этим и вскоре достиг такого совершенства, что намного превзошел наиболее знаменитых итальянских мастеров (Ипполита Мариани, прозванного «Простофилей», Евстахия Дивини из Рима, Франческо Фонтана из Неаполя), изделия которых признаются крупнейшими достижениями оптики первой половины XVII века.

В дальнейшем мы будем говорить об открытии Торричелли атмосферного давления, открытии, которое больше других способствовало тому, что его имя стало бессмертным. Сейчас мы ограничимся лишь кратким рассмотрением его работ по механике, содержащихся в единственной опубликованной им книге, состоящей из трех частей. Первая и третья части посвящены геометрии, а вторая, озаглавленная «De motu gravium descendentium et proiec-torum libri duo» («О движении свободно падающих и брошенных тяжелых тел»), представляет собой ту рукопись, которую Кастелли принес на просмотр Галилею.

В первой книге этого трактата Торричелли ставит себе целью доказать постулат Галилея о равенстве скоростей тяжелых тел, падающих по наклонным плоскостям одинаковой высоты, и, не зная, что это уже сделано Галилеем, доказывает его. При этом он принимает в качестве постулата принцип, носящий сейчас имя Торричелли, о движении центров тяжести. Благодаря Торричелли при многочисленных применениях этого принципа (к наклонной плоскости, рычагу, движению по хорде круга и по параболе) были опровергнуты взгляды ряда авторитетных ученых, которые ставили в упрек Архимеду то, что он считал вертикальные направления двух нитей с подвешенными грузами у поверхности земли параллельными, а не сходящимися к центру Земли. Торричелли показал, что представление Архимеда более пригодно для теоретических физических исследований.

Во второй книге трактата Торричелли сначала рассматривает движение брошенных тел, обобщая подход, принятый в «Беседах» Галилея, где обсуждается лишь движение тел, брошенных по горизонтали. Только попутно, для доказательства, Галилей выдвинул утверждение, что если тело бросить из точки его падения со скоростью, равной, но противоположной той, с которой оно пришло в точку падения, то оно пройдет ту же параболу в обратном направлении. Торричелли же рассмотрел движение тела, брошенного под произвольным углом, и, применив к нему принципы Галилея, определил параболический характер траектории и установил другие, хорошо известные сейчас теоремы баллистики. В частности, обобщая наблюдение Галилея, он заметил, что движение брошенного тела - явление обратимое. Таким образом, представление о том, что динамические явления обратимы, т. е. что время в галилеевой механике упорядочено, но лишено ориентации, восходит к Галилею и Торричелли.

После раздела «О движении жидкостей», которого мы коснемся ниже, Торричелли приводит пять баллистических таблиц, по-видимому, первых таблиц в истории артиллерии, причем, опасаясь, что практики, для которых предназначены эти таблицы, не понимают латыни, он внезапно переходит на итальянский язык.

В вопросе о движении жидкостей (непосредственными предшественниками в этих исследованиях были Бенедетти и Кастелли) вклад Торричелли столь велик, что Мах провозгласил его основателем гидродинамики. Основная проблема, которую поставил перед собой Торричелли, заключалась в определении скорости истечения жидкости из узкого отверстия в дне сосуда. С помощью специального приспособления он заставил жидкость, вытекающую из отверстия, бить ключом вверх и установил, что она подымается на высоту, меньшую, чем уровень воды в сосуде. Тогда он предположил, что, если бы совсем не было сопротивления движению жидкости, струя поднялась бы до уровня воды в сосуде. Очевидно, эта гипотеза эквивалентна для данного частного случая закону сохранения энергии. Используя аналогию с падением тяжелых тел, Торричелли выводит из принятой гипотезы следующее основное положение (называемое теперь «теоремой Торричелли»):

«Вырывающаяся из сосуда вода имеет в точке истечения ту же скорость, которую имело бы произвольное тяжелое тело, а значит, и отдельная капля той же воды, падая свободно с верхнего уровня этой воды до уровня отверстия» («De motu...», Libro II, prop. XXXVII, в книге Ореrе di Evangelista Torricelli, ed. G. Loria, G. Vassura, Faenze, II, 1919, p. 186 ).

Эта теорема, являющаяся основой гидростатики, была впоследствии доказана Ньютоном и Вариньоном. Торричелли испо.льзовал ее вместе с уже полученными результатами, касающимися движения брошенных тел, чтобы доказать, что если отверстие сделано в стенке у дна сосуда, то струя имеет параболическую форму. Кроме того, Торричелли принадлежат тонкие физические наблюдения над распадением на капли струи жидкости и влиянием сопротивления воздуха.

4. ДЖОВАННИ АЛЬФОНСО БОРЕЛЛИ

К ученикам Галилея относится также неаполитанец (по другим данным - мессинец) Джованни Альфонсо Борелли (1608-1679) - один из наиболее проницательных умов итальянской науки XVII века. Борелли предвосхитил ньютоново представление о том, что планеты стремятся к Солнцу по той же причине, по которой тяжелые тела стремятся к Земле. Его сравнение движения камня, вращающегося на краю пращи, и движения планеты вокруг Солнца, по почти единодушному мнению всех критиков, - первый зародыш теории динамического равновесия движущихся планет. Согласно Борелли, «инстинкт», который заставляет планету стремиться к Солнцу, уравновешивается тенденцией каждого тела удаляться от центра. Борелли считает эту vis repellens, или центробежную силу, как мы ее сейчас называем, обратно пропорциональной радиусу описываемой окружности.

В своей работе по механике «De vi percussionist («0 силе удара»), 1667 г., более широкой по смыслу, чем это видно из названия, он приводит законы центрального соударения двух неупругих сфер, справедливые и сейчас. В этой работе он ставит себе целью определить, каково было бы эффективное движение падающих тел, если предположить (ex mera hypothesi - «чисто гипотетически», добавляет он с осмотрительностью, особенно необходимой, поскольку он был монахом), что тела принимают участие в равномерном круговом вращательном движении Земли. И он приходит к выводу об отклонении тел к востоку, которое было экспериментально подтверждено лишь в 1791 г. Джован Баттистой Гульельмини (?-1817) в опытах с падением тел с башни Азинелли в Болонье.

В своей работе «De motionibus naturalibus a gravitate pendentibus» («О естественных движениях, зависящих от тяжести»), 1670 г., одну главу он посвящает экспериментальному исследованию капиллярных явлений и приходит к выводу, что в капиллярных трубках подъем жидкости обратно пропорционален диаметру трубки. Этот закон был вторично открыт в 1718 г. врачом Жаком Жюреном (1684-1750), по имени которого он и назван. В этой же работе приведено определение удельного веса воздуха - с помощью прибора - первого представителя ареометров с постоянным объемом. В 1656 г. Борелли вместе с Вивиани определили скорость звука в воздухе, воспользовавшись прямым методом, предложенным Галилеем, т. е. измеряя интервал времени между моментом светового восприятия взрыва и моментом, когда становится слышен звук взрыва. Так ему удалось получить значительно более точные результаты, чем его предшественникам (Мерсенн, Гассенди и др.). Однако лучшим творением Борелли, достойно венчающим все остальные его работы, является его труд «De motu animalium» («О движении животных»), вышедший посмертно в двух томах в 1680- 1681 гг. в Риме, где Борелли умер в глубокой нищете.

В первом томе описываются строение, форма, действие и возможности мышц человека и животных. Во втором томе с помощью механических аналогий рассматриваются сокращения мышц, движения сердца, циркуляция крови, пищеварение. Эта работа, многократно переиздававшаяся, положила начало новому научному направлению - ятромеханике. Особенное восхищение вызывает глава XXII о полете птиц (De volatu), издававшаяся поэтому много раз отдельно. Уже в нашем веке в английском переводе эта глава была включена в серию «Aeronautical classics» (№ 6, London, 1911), а в немецком переводе - в серию «Klassiker der exakten Wissenschaften» (№ 221, Leipzig, 1927).

5. МАЯТНИКОВЫЕ ЧАСЫ

Вскоре после открытия «медицейских планет», т. е. первых четырех спутников Юпитера (Галилей назвал обнаруженные им спутники Юпитера «медицейскими звездами» в честь герцога Тосканского Козимо Медичи. - Прим. перев ), у Галилея родилась идея использовать их для определения долготы места, что, как известно, имеет громадное значение для мореплавателей. Теоретически определение долготы выглядит весьма просто: рассчитав для какого-то места эфемериды, определяющие момент, когда спутник входит в конус тени Юпитера, достаточно установить время, когда это явление наблюдается в другом месте, чтобы по разности этих времен найти разность долгот обоих мест. Но применение этого метода требует таблиц с эфемеридами и двух хронометров.

В 1612, затем в 1616 г. и еще позже в 1630 г. Галилей пытался вступить в переговоры с испанским правительством, чтобы передать ему это открытие, но его попытки не увенчались успехом. В 1636 г. он вновь обратился с этим предложением к Генеральным штатам Нидерландов, которые с удовольствием приняли это предложение, тотчас назначили специальную комиссию для его рассмотрения и постановили отправить в дар Галилею золотое колье стоимостью 500 флоринов. Комиссия отметила некоторые недостатки проекта Галилея, которые тот признал справедливыми, но вполне преодолимыми. Однако дело было не из тех, которые можно решить перепиской, поэтому Галилей предложил, чтобы к нему в Арчетри приехали представители Генеральных штатов. Друзья Галилея обратились к секретарю принца Оранского Константину Гюйгенсу, отцу Христиана Гюйгенса, с просьбой оказать содействие, используя свое высокое положение при Генеральных штатах. Константин Гюйгенс принял предложение и довел переговоры до благополучного конца. Однако весть о них дошла до кардинала Франческо Барберини, и тот немедленно приказал Генеральному инквизитору Флоренции воспрепятствовать переговорам. Поэтому Галилей прервал переговоры и отказался от дара Генеральных штатов, который как раз в эти дни ему доставила купеческая делегация.

«У меня есть такой измеритель времени, что если бы сделать 4 или 6 таких приборов и запустить их, то мы бы обнаружили (в подтверждение их точности), что измеряемое и показываемое ими время не только из часу в час, но изо дня в день, из месяца в месяц не отличалось бы на различных приборах даже на секунду, настолько одинаково они бы шли» (Le Opere di Galileo Galilei, Ediz. Naz., XVI, p. 467 ).

Нетрудно сообразить, что измеритель времени, о котором упоминает Галилей, должен был быть прибором, в котором используется изохронизм колебаний маятника. И действительно, в письме от июня 1637 г. Реалю (или Реалио - согласно принятому итальянизированному написанию), губернатору Голландских Индий, Галилей сообщает, что его часы представляют собой применение маятника, и описывает также специальный счетчик числа колебаний. В 1641 г., по словам Вивиани, ему

«... пришло в голову, что можно добавить маятник к часам с гирями и с пружиной» (Там же, XIX, p. 655 ).

Уже глубоким стариком он поверил эти планы своему сыну Винченцо (ум. в 1649 г.). Отец и сын решили построить механизм (дошедший до нас благодаря чертежу Вивиани) с остроумным устройством часового спуска (так называемый «крючковый спуск»). То, что Винченцо Вивиани построил в действительности такие часы, установлено точно: это следует из инвентарной описи наследства его жены и из переписки Леопольдо де Медичи, который послал Буйо 21 августа 1659 г. чертеж модели, «нарисованный столь же грубо, как и сама модель, находящаяся сейчас в моей комнате».

Христиан Гюйгенс (1629-1695) в письме от 12 января 1657 г. сообщил о созданных им маятниковых часах. В июне того же года он получил патент на эти часы, а в 1658 г. опубликовал свое открытие в сочинении «Horologium» («Часы»). Знал ли о проекте Галилея Христиан Гюйгенс, сын Константина Гюйгенса, принимавшего большое участие в переговорах Галилея с Генеральными штатами и, в частности, знакомого с идеей Галилея о применении маятника в часах? Он всегда отрицал это, признавая лишь, что ему пришла в голову та же идея, что и Галилею, часы которого шли так же хорошо, как и его собственные, и говорил, что целью создания часов он, как и Галилей, считал определение долготы места на море.

Мы не видим оснований не доверять голландскому ученому, конструкция часов которого уступает конструкции Галилея в механизме спуска, так как он сохранил старинное несовершенное устройство, но зато значительно превзошел Галилея, заменив гирю пружиной с балансом.

6. ХРИСТИАН ГЮЙГЕНС

Опубликование «Часов» вскоре создало Гюйгенсу такую славу, что Кольбер пригласил его в 1666 г. в Париж, где в то время была основана Парижская Академия наук (см. § 14). Там Гюйгенс оставался до 1681 г. Осложнившаяся обстановка в связи с преследованиями гугенотов, к которым принадлежал Гюйгенс, заставила его благоразумно вернуться в Гаагу.

Его работа 1658 г. о часах носит ясно выраженный прикладной характер. Но от математика такого масштаба, как Гюйгенс, не укрылись и те теоретические проблемы механики, которые связаны с созданием часов. Исследованию этих проблем он посвятил последующие годы. В 1673 г. в Париже выходит его шедевр - труд «Horologium oscillatorium, sive de motu pendulorum ad horologia aptato demonstrationes geometricae» («Качающиеся часы, или о движении маятника»), состоящий из пяти частей: описание часов, движение тяжелых тел по циклоиде; развертка и определение длины кривых линий; центр колебаний или возбуждения; устройство другого типа часов - с круговым маятником; теоремы о центробежной силе.

Гюйгенс был прямым продолжателем Галилея и Торричелли, теории которых он, по его собственному выражению, «подтверждал и обобщал». Галилей основал динамику лишь одного тела, Гюйгенс же начал построение динамики нескольких тел.

Остановимся вкратце на содержании этой работы, имеющей фундаментальное значение для истории механики, опустив при этом первую и третью части, не имеющие прямого отношения к нашей теме.

Во второй части, после изложения галилеевских законов падения тяжелых тел, доказательство которых он уточняет систематическим применением принципа сложения перемещений, Гюйгенс с помощью замечательных рассуждений дифференциально-геометрического характера устанавливает изохронизм колебаний циклоидального маятника.

Четвертая часть начинается с упоминания о том, что в те годы, когда Гюйгенс был еще юношей, Мерсенн предложил ему найти центр колебаний, т. е. уточку на проведенном через центр тяжести перпендикуляре к оси колебаний, отстоящую от оси колебаний на расстоянии, равном длине простого маятника, изохронного с данным сложным маятником.

Понятие центра колебаний, которому Гюйгенс дал приведенное выше определение, встречается уже у Галилея и повторяется у Мерсенна в 1646 г.: если бы имелась совокупность простых маятников различной длины, представляемых как тяжелые точки, подвешенные на невесомых нитях так, что все были бы прикреплены к одной и той же перекладине, то более короткие маятники колебались бы быстрее более длинных. Если все эти маятники сразу скрепить между собой так, чтобы они образовали жесткую систему, то они вынуждены были бы все совершать колебания за одно и то же время, более короткие маятники ускоряли бы движение более длинных, одни маятники теряли бы скорость, другие увеличивали бы ее, а третьи не теряли бы и не увеличивали. Центром колебаний называется положение тяжелой точки того из маятников этой последней группы, который расположен на перпендикуляре к оси подвеса, проведенном через центр тяжести.

Руководствуясь приведенными соображениями, Декарт и Роберваль пытались найти положение центра колебаний, но эта попытка успехом не увенчалась.

Гюйгенс также занялся этой проблемой и решил ее, приняв за основу рассмотрения принцип Торричелли. Теория Гюйгенса представлялась его современникам неубедительной, поэтому Якоб Бернулли развил в 1703 г. другую, более строгую теорию и пришел к той же формуле для «приведенной длины» сложного маятника, что и Гюйгенс. В ходе рассмотрения проблемы было введено понятие момента инерции и было открыто знаменитое соотношение (предложение XX у Гюйгенса): «центр колебаний и точка подвеса «взаимосопряжены» (Ch. Huуgens, Horologium oscillatorium, Paris, 1673, в книге Oeuvres completes, XVIII, La Haye, 1934, p. 305 ).

Это соотношение позволяет находить центр колебаний экспериментально. В 1818 г. Генрих Катер (1777-1835) использовал эту теорему, сконструировав «обратимый маятник», т. е. практический прибор для определения длины секундного маятника и для определения значения ускорения силы тяжести в данном месте. И этим последним применением маятника мы тоже обязаны Гюйгенсу.

В 1676 г. Жан Рише (ум. в 1696 г.) был чрезвычайно удивлен тем, что маятник с секундным периодом в Париже стал в Кайенне колебаться медленнее. Его укоротили и после окончания исследований перевезли обратно в Париж, где он, наоборот, стал колебаться быстрее. Гюйгенс в своем труде «Duscours sur la cause de la pesanteur» («О причине тяжести»), законченном в 1681 г. и опубликованном в 1690 г., объяснил это явление изменением значения ускорения силы тяжести, которое он приписывал исключительно вариации центробежной силы, обусловленной вращением Земли. Это исследование привело его к заключению, что Земля должна быть сплющена у полюсов ж вздута у экватора. Чтобы подтвердить это экспериментально, он привел в быстрое вращение шар из мягкой глины, надетый на ось, и наблюдал его сплющивание. Как известно, сейчас этот опыт повторяется в учебных целях с упругими стальными кольцами, надетыми на ось по диаметру. Этот опыт оказал заметное влияние на генезис космогонических теорий Канта и Лапласа.

С 1659 г. Гюйгенс писал трактат «De vi centrifugal («О центробежной - силе»), который был опубликован лишь посмертно, в 1703 г. В нем Гюйгенс исследовал «стремление» (conatus) тела, прикрепленного к вращающемуся колесу, - это стремление, согласно Гюйгенсу, той же природы, что и стремление тяжелого тела к падению. Что произойдет, если человек, находящийся на вращающемся колесе, держит в руке нить, на которой висит свинцовый шарик? Произойдет то, отвечает Гюйгенс, что нить будет натянута с такой же силой, которая тянула бы шарик, если бы он был прикреплен к центру.колеса. После некоторых геометрических рассуждений Гюйгенс приходит к выводу:

«Conatus шара, прикрепленного к вращающемуся колесу, таков, что шар -стремился бы двигаться равномерно ускоренно по радиусу... Этот conatus аналогичен тому, который имеется у тяжелого тела, подвешенного на нити. Отсюда мы заключаем, что центробежные силы неодинаковых тел, движущихся с одинаковой скоростью по равным окружностям, относятся между собой как веса этих тел, т. е. как количества вещества в них... Остается найти величину или количество conatus для различных скоростей вращения» (Ch. Huуgens, De vi centrifuga, в книге Oeuvres completes, XVI, 1929, p. 266 ).

Остается добавить, что определяющие центробежную силу законы, найденные Гюйгенсом и приведенные без доказательства в конце «Качающихся часов», совпадают с теми, которые мы можем сейчас прочесть (с небольшим изменением терминологии) в любом элементарном курсе физики.

После нашего беглого обзора излишне добавлять, что для Гюйгенса центробежная сила отнюдь не фиктивная, а вполне реальная сила той же природы, что и сила тяжести.

О работах Гюйгенса по оптике мы будем говорить в следующей главе. В эту область голландский ученый внес наибольший вклад. Однако мы не можем закончить обзор его работ по механике, не упомянув об исследованиях столкновений тел.

Эта задача представляла особую трудность для первых механиков. Ею занимался Джован Баттиста Бальяни в своей работе «De motu gravium, solidorum» («0 движении твердых тел»), 1638 г. Галилей собирался посвятить, этому вопросу «День шестой» своих «Бесед», но хотя в дошедших до нас фрагментах могут вызвать восхищение удивительно интересные эксперименты, никакого решения проблемы мы там не найдем. Как мы видели ранее, на этом подводном камне потерпела крушение вся механика Декарта. Значительно больше повезло Борелли, который нашел законы соударения неупругих тел. Гюйгенс же обратился к исследованию соударения упругих тел.

В своей работе «De motu corporum ex percussione» («О движении тел после удара»), законченной в 1656 г., но опубликованной уже после его смерти, в 1700 г., Гюйгенс рассматривает эту сложную задачу на основе трех принципов: принципа инерции, принципа относительности и третьего принципа, о котором мы скажем ниже. Здесь же мы добавим, что принцип относительности Гюйгенс понимает в смысле Декарта, т. е. более широко, чем Галилей и Ньютон; иными словами, Гюйгенс не признает абсолютного движения относительно пространства.

Третий принцип (по нумерации Гюйгенса - второй) утверждает, что если два одинаковых тела с равными, но противоположно направленными скоростями испытывают центральный удар, то они отлетают одно от другого с теми же скоростями, но измененившими знак. Основываясь на этих исходных принципах, Гюйгенс вывел законы соударения упругих тел, которые затем изложил в мемуаре, представленном в 1669 г. на конкурс на лучшую работу по теории удара, объявленный Королевским обществом годом раньше. В этом конкурсе участвовали также Джон Уаллис (1616-1703), рассмотревший соударение неупругих тел, и Христофор Рен (1632-1723), рассмотревший соударение упругих тел. Исследование Гюйгенса, несомненно, значительно превосходило эти две работы и по широте постановки вопроса и по ясности изложения; правда, иной раз ясность достигалась в ущерб краткости. Последующие исследования по механике мало что изменили в законах соударения Гюйгенса.

В работах Уаллиса, Рена и Гюйгенса изложение носит геометрический характер. Эдм Мариотт (1620-1684) в своей работе «Traite de la percussion ou choc des corps» («Трактат о соударении тел»), опубликованной посмертно в его трудах (Лейден, 1717), исследовал те же задачи и чисто экспериментальным путем пришел примерно к тем же результатам. Чтобы иметь возможность произвольно регулировать скорость тела, Мариотт придумал приспособление, состоящее из двух равных маятников, которые можно заставить падать с произвольно регулируемой высоты. Ему принадлежит также прибор, применяемый и сейчас для демонстрации передачи движения упругими телами и состоящий из ряда подвешенных на нитях упругих шаров, соприкасающихся друг с другом; если сместить первый шар и позволить ему падать, то последний шар поднимется вверх, а остальные останутся неподвижными.

7. ПОЛЕМИКА О ЖИВОЙ СИЛЕ

В упомянутой выше работе о соударении тел и в более явной форме еще раз в 1686 г. Гюйгенс выдвигает утверждение, что сумма произведений «каждого тела» на квадрат его скорости до и после удара остается неизменной. С этой теоремой сохранения был знаком и Лейбниц, который, сообщив о ней письмом Гюйгенсу, сделал ее предметом мемуара «Demonstratio erroris memorabilis Cartesii» («Доказательство примечательной ошибки Декарта»), опубликованного в 1686 г. в «Acta eruditorum» («Ученые записки»). В этом мемуаре Лейбниц называет произведение «тела» на квадрат его скорости «живой силой» и противопоставляет его «мертвой силе», или, как мы бы ее назвали теперь, потенциальной энергии. Первое выражение, как известно, осталось в науке до сих пор с изменением, внесенным Густавом Кориолисом (1792-1843), который в качестве меры живой силы предпочел принять половину произведения массы тела на квадрат его скорости.

Итак, Лейбниц предложил оценивать «силу» (мы бы сказали - энергию) падающего тела высотой, на которую это тело могло бы подняться, если бы его бросили вверх с приобретенной им скоростью; таким образом, во всех случаях имело бы место равенство между живой силой и мертвой силой. Если так оценивать «силу», то из законов механики можно вывести, что она равна произведению «тела» на квадрат его скорости, так что тело, удвоившее свою скорость, учетверяет свою «силу». При соударении тел сохраняется не количество движения, как утверждает третье правило Декарта, а сумма живых сил соударяющихся тел; в этом, согласно Лейбницу, и кроется ошибка Декарта.

Однако картезианцы поднялись против Лейбница в защиту Декарта. Между сторонниками Лейбница и Декарта завязались оживленные споры, длившиеся свыше 30 лет и известные в истории физики как «полемика о живой силе».

По сути дела, картезианцы обращали внимание на то, что когда тело, брошенное вверх, подымается на первоначальную высоту за вдвое большее время и производит учетверенный эффект за вдвое большее время, то это означает, что его «сила» не учетверилась, а лишь удвоилась. Здесь неуместно входить в технические детали полемики. Достаточно сказать, что спор был разрешен в 1728 г. Жан-Жаком де Мераном (1678-1771) и еще лучше Жаном Даламбером (1717-1783) в предисловии к его «Traite de dynamique» («Трактат о динамике»), 1743 г. Весь спор был основан на двусмысленности определения количества движения. Картезианцы придерживались скалярного определения, данного Декартом. Де Меран показал, что все примеры соударений, приведенные в процессе полемики, подчиняются закону сохранения количества движения, если только его понимать правильно, т. е. в векторном смысле. Таким образом, окончательно: при упругом ударе имеет место как сохранение количества движения, так и сохранение живой силы

Часы раздора

Наш следующий герой - Христиан Гюйгенс - был непосредственным преемником Галилея в науке. По словам Лагранжа, Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея».

Христиан Гюйгенс фон Цюйлихен (1629–1695), сын голландского дворянина Константина Гюйгенса, родился 14 апреля 1629 года. «Таланты, дворянство и богатство были, по-видимому, наследственными в семействе Христиана Гюйгенса», - писал один из его биографов.

Его дед был литератор и сановник, отец - тайный советник принцев Оранских, математик, поэт. Верная служба своим государям не закрепощала их талантов, и казалось, Христиану предопределена та же, для многих завидная судьба. Он учился арифметике и латыни, музыке и стихосложению. Генрих Бруно, его учитель, не мог нарадоваться своим четырнадцатилетним воспитанником: «Я признаюсь, что Христиана надо назвать чудом среди мальчиков. Он развертывает свои способности в области механики и конструкций, делает машины. Искусный мастер, он самостоятельно шлифует оптические стекла, совершенствует трубу, с помощью которой позднее совершит свои астрономические открытия» .

Окончив университет, Гюйгенс становится украшением свиты графа Нассауского. Он сознавал свои способности и стремился использовать их в полной мере. «Единственное развлечение, которое Гюйгенс позволял себе… - писал о нем один из современников, - состояло в том, что он в промежутках занимался физикой. То, что для обыкновенного человека было утомительным занятием, для Гюйгенса было развлечением». В 1663 году Гюйгенс был избран членом Лондонского королевского общества. В 1665 году, по приглашению Кольбера, он поселился в Париже и в следующем году стал членом только что организованной Парижской академии наук. Пятнадцать лет он проработал при дворе Людовика XIV, и это были пятнадцать лет блестящих математических и физических исследований. Одно из важнейших изобретений Гюйгенса - часы с маятником, появившиеся в 1656 году. На их циферблате была только одна стрелка - часовая. В этих часах гиря поворачивала колесо, и его вращение передавалось верхнему - храповидному колесу. Маятник проходил между зубьями вилки, и при каждом качании вилка заставляла поворачивать то вправо, то влево стержень с двумя пластинками. Эти пластинки были расположены так, что поочередно упирались то в один, то в другой зубец храповидного колеса.

Гюйгенс запатентовал свое изобретение 16 июля 1657 года и описал его в небольшом сочинении, опубликованном в 1658 году. Он писал о своих часах французскому королю Людовику XIV: «Мои автоматы, поставленные в ваших апартаментах, не только поражают вас всякий день правильным указанием времени, но они годны, как я надеялся с самого начала, для определения на море долготы места» . Задачей создания и совершенствования часов, прежде всего маятниковых, Христиан Гюйгенс занимался почти сорок лет: с 1656 по 1693 год. Немецкий физик А. Зоммерфельд назвал Гюйгенса «гениальнейшим часовым мастером всех времен» . Часы Гюйгенса реально работали и обеспечивали превосходную для его времени точность хода. Вскоре они получили широчайшее распространение по всему миру.

Вот изобрел Гюйгенс в 1657 году точные маятниковые часы, дал их теорию, опубликовал все это и получил патент. Казалось бы, радуйся. Но оказалось, что ранее в этой области работал Галилей. В письме от 1636 года голландскому адмиралу Галилей предлагал соединить маятник со счетчиком колебаний. Вдохновившись экспериментально установленным им почти полным равенством периодов колебаний тяжелых маятников при малых амплитудах, в 1641 году он разработал проект маятниковых часов с вполне работоспособным спусковым регулятором, содержащим ходовое колесо и спусковую вилку с палетами. Первые образцы таких часов были изготовлены уже после смерти Галилея его сыном Винченцо, а одна из их моделей дожила до наших дней и находится в Лондонском национальном музее науки.

Свято чтивший память учителя, Вивиани был глубоко уязвлен, когда спустя шестнадцать лет после смерти Галилея ему попалась в руки небольшая книжка, изданная в Голландии: «Трактат о часах». Ее автор Гюйгенс называл изобретателем маятниковых часов не Галилея, а себя. Вивиани попросил герцога Тосканского сообщить королевскому куратору астрономии во Франции, где тогда работал Гюйгенс, о том, что идея измерения времени с помощью маятника появилась у Галилея чуть ли не сто лет назад, и приложил общий чертеж таких часов, над которыми Галилей начал работать за год до смерти, в 1642 году, и которые, увы, не успел завершить и сын Галилея аж за десять лет. Роль посредника в этом щекотливом деле взял на себя принц Леопольд Медичи.

Письмо принца стало для Гюйгенса громом с ясного неба . Его обвиняли в плагиате! Как доказать, что он даже не подозревал о намерении глубоко уважаемого им Галилея построить подобные часы? Но Гюйгенс, к счастью, был знаменит. Математик, астроном, оптик, в свои 29 лет он уже признан ученым миром Голландии, Франции, Англии. Его допустили к секретным архивам Нидерландов, дали прочитать переписку с Галилеем. В ней говорится не о часах, а об открытом итальянским ученым способе определения долготы по спутникам Юпитера, хорошо видным в галилеевский телескоп. Второе, не менее важное обстоятельство: механизм Галилея совсем не был похож на механизм, изобретенный Гюйгенсом. Дело в том, что изобретение точного, надежного и простого счетчика колебаний маятника потребовало сложного геометрического анализа, приведшего к вычислению необходимой кривой - циклоиды. Это мог сделать и сделал только Гюйгенс. Гюйгенс владел методами математических исследований, создал первую теорию маятника и маятниковых часов и методы их расчета, а их изложение в его книге «Маятниковые часы» («Horologium oscillatorium») стало на долгие годы основой осознанного подхода к их проектированию и совершенствованию.

Все это молодой голландец изложил в вежливом ответе принцу Медичи. В конце приписал, что считает для себя большой честью решить задачу создания маятниковых часов, с которой не справился великий Галилей, но безоговорочно признает первенство Галилея в открытии свойств маятника . Гюйгенс, безусловно, не знал о первых маятниковых часах Галилея, во всяком случае, до 1660 года, когда его впервые ознакомили с чертежами этих часов. Поэтому его справедливо считают автором независимого изобретения.

Гюйгенсу принадлежит и приоритет первого применения в часах колебательной системы баланс - спираль (в 1675 году), не оцененный в то время по достоинству, ибо точность таких часов была значительно ниже, чем маятниковых. Этот механизм основан на колебаниях подпружиненного тела. В современных часах, будь то карманные или будильник, можно увидеть колесико - элемент предложенного Гюйгенсом механизма. Что крайне важно - тряска и качка на такие часы практически не влияют.

В 1674 году парижский часовщик Тюре сделал по указаниям Гюйгенса первые балансовые часы. Увы, ход таких часов сильно зависел от окружающей температуры: достаточно было температуре воздуха измениться на один градус, как часы начинали «ходить» в двадцать раз резвее маятниковых.

В Париже Гюйгенсу «привилегию» на маятниковые часы не выдали, потому что заявил претензию некий аббат Отфей (1647–1724) из Орлеана. Значительно позже, в 1722 году, он опубликовал описание хода, весьма похожего на предложенный Гюйгенсом. Попытка получить патент в Англии вызвала резкий протест Роберта Гука: оказывается, он десять лет назад говорил на лекции, что спиральная пружина может сыграть в часах роль силы тяжести, действующей на маятник. Изобретение это было сделано им в 1656–1658 годах. По указаниям Гука часовой мастер Томпсон сделал для Карла II первые часы с регулирующей пружиной.

Что было делать? Гюйгенс, устав от бесконечных обвинений, от необходимости доказывать свою честность, бросил заниматься часами. «Я предоставил свободу всем часовщикам работать над этим изобретением», - сказал он одному из друзей.

Наверное, все участники спора были бы поражены, узнай они, что за 200 лет до Гюйгенса и Галилея маятниковые часы изобрел Леонардо да Винчи. Но бумаги Леонардо были обнаружены только спустя еще три столетия.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Что такое теория относительности автора Ландау Лев Давидович

Из книги Астрономия древнего Египта автора Куртик Геннадий Евсеевич

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Глава пятая ЧАСЫ И ЛИНЕЙКИ КАПРИЗНИЧАЮТ Снова садимся в поезд Перед нами очень длинная железная дорога, по которой движется поезд Эйнштейна. На расстоянии 864 000 000 километров друг от друга находятся две станции. При скорости 240 000 километров в секунду поезду Эйнштейна

Из книги История лазера автора Бертолотти Марио

Часы систематически отстают Итак, в то время как на станции прошло 10 секунд, в поезде - всего лишь 6 секунд. Значит, если по станционному времени поезд пришел через час после своего отправления, то по часам пассажира пройдет всего 60 X (6 / 10) = 36 минут. Другими словами, часы

Из книги Вечное движение. История одной навязчивой идеи автора Орд-Хьюм Артур

Измерение времени ночью. Деканы. Звездные часы Важной проблемой, связанной с необходимостью определять время ночных служб в храмах, было измерение времени ночью. Из ритуальных календарей Позднего периода известно, что некоторые праздники в египетских храмах отмечались

Из книги автора

Часы Рамессидов. В середине II тыс. до н. э. появился новый метод определения ночного времени по моментам прохождений особых часовых звезд через меридиан и прилегающие к нему вертикалы. Его датировка, произведенная на основании данных о гелиакическом восходе Сотис, дает

Из книги автора

Водяные и солнечные часы Водяные часы. Самые древние египетские водяные часы (клепсидры) обнаружены в Карнаке и датируются эпохой Аменхотепа III (XIV в. до н. э.), но восходят к более раннему времени, так как зафиксированное на них отношение «самая короткая ночь - месяц

Из книги автора

ЭЛЕКТРОЛИТИЧЕСКИЕ ЧАСЫ* Если тонкий, легко вращающийся и хорошо сбалансированный диск или цилиндр поместить в соответствующий гальванический раствор посредине между анодом и катодом, то одна половина диска станет электрически положительной, а другая половина -

Из книги автора

Атомные часы Как мы уже говорили, в 1949 г. Н. Рамси изобрел резонансную методику с разнесенными осциллирующими полями, которая в 1955 г. была использована Дж. Захариасом, Дж. Пари, Луисом Эссеном и др. для создания атомных часов и стандартов частоты. За этот метод Рамси в 1989 г.

Из книги автора

Атомные часы Было установлено, что наиболее интересным применением мазеров на атомных пучках является создание атомных часов. Очень точные часы можно использовать, чтобы установить, являются ли астрономические «константы» действительно постоянными или они изменяются





error: Контент защищен !!