Используя схему горнера разделить многочлен на. Презентация на тему "схема горнера"

Схема Горнера - способ деления многочлена

$$P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$$

на бином $x-a$. Работать придётся с таблицей, первая строка которой содержит коэффициенты заданного многочлена. Первым элементом второй строки будет число $a$, взятое из бинома $x-a$:

После деления многочлена n-ой степени на бином $x-a$, получим многочлен, степень которого на единицу меньше исходного, т.е. равна $n-1$. Непосредственное применение схемы Горнера проще всего показать на примерах.

Пример №1

Разделить $5x^4+5x^3+x^2-11$ на $x-1$, используя схему Горнера.

Составим таблицу из двух строк: в первой строке запишем коэффициенты многочлена $5x^4+5x^3+x^2-11$, расположенные по убыванию степеней переменной $x$. Заметьте, что данный многочлен не содержит $x$ в первой степени, т.е. коэффициент перед $x$ в первой степени равен 0. Так как мы делим на $x-1$, то во второй строке запишем единицу:

Начнем заполнять пустые ячейки во второй строке. Во вторую ячейку второй строки запишем число $5$, просто перенеся его из соответствующей ячейки первой строки:

Следующую ячейку заполним по такому принципу: $1\cdot 5+5=10$:

Аналогично заполним и четвертую ячейку второй строки: $1\cdot 10+1=11$:

Для пятой ячейки получим: $1\cdot 11+0=11$:

И, наконец, для последней, шестой ячейки, имеем: $1\cdot 11+(-11)=0$:

Задача решена, осталось только записать ответ:

Как видите, числа, расположенные во второй строке (между единицей и нулём), есть коэффициенты многочлена, полученного после деления $5x^4+5x^3+x^2-11$ на $x-1$. Естественно, что так как степень исходного многочлена $5x^4+5x^3+x^2-11$ равнялась четырём, то степень полученного многочлена $5x^3+10x^2+11x+11$ на единицу меньше, т.е. равна трём. Последнее число во второй строке (ноль) означает остаток от деления многочлена $5x^4+5x^3+x^2-11$ на $x-1$. В нашем случае остаток равен нулю, т.е. многочлены делятся нацело. Этот результат ещё можно охарактеризовать так: значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю.

Можно сформулировать вывод и в такой форме: так как значение многочлена $5x^4+5x^3+x^2-11$ при $x=1$ равно нулю, то единица является корнем многочлена $5x^4+5x^3+x^2-11$.

Пример №2

Разделить многочлен $x^4+3x^3+4x^2-5x-47$ на $x+3$ по схеме Горнера.

Сразу оговорим, что выражение $x+3$ нужно представить в форме $x-(-3)$. В схеме Горнера будет учавствовать именно $-3$. Так как степень исходного многочлена $x^4+3x^3+4x^2-5x-47$ равна четырём, то в результате деления получим многочлен третьей степени:

Полученный результат означает, что

$$x^4+3x^3+4x^2-5x-47=(x+3)(x^3+0\cdot x^2 +4x-17)+4=(x+3)(x^3+4x-17)+4$$

В этой ситуации остаток от деления $x^4+3x^3+4x^2-5x-47$ на $x+3$ равна $4$. Или, что то самое, значение многочлена $x^4+3x^3+4x^2-5x-47$ при $x=-3$ равно $4$. Кстати, это несложно перепроверить непосредственной подстановкой $x=-3$ в заданный многочлен:

$$x^4+3x^3+4x^2-5x-47=(-3)^4+3 \cdot (-3)^3-5 \cdot (-3)-47=4.$$

Т.е. схему Горнера можно использовать, если необходимо найти значение многочлена при заданном значении переменной. Если наша цель - найти все корни многочлена, то схему Горнера можно применять несколько раз подряд, - до тех пор, пока мы не исчерпаем все корни, как рассмотрено в примере №3.

Пример №3

Найти все целочисленные корни многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$, используя схему Горнера.

Коэффициенты рассматриваемого многочлена есть целые числа, а коэффициент перед старшей степенью переменной (т.е. перед $x^6$) равен единице. В этом случае целочисленные корни многочлена нужно искать среди делителей свободного члена, т.е. среди делителей числа 45. Для заданного многочлена такими корнями могут быть числа $45; \; 15; \; 9; \; 5; \; 3; \; 1$ и $-45; \; -15; \; -9; \; -5; \; -3; \; -1$. Проверим, к примеру, число $1$:

Как видите, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=1$ равно $192$ (последнее число в второй строке), а не $0$, посему единица не является корнем данного многочлена. Так как проверка для единицы окончилась неудачей, проверим значение $x=-1$. Новую таблицу для этого составлять не будем, а продолжим использование табл. №1, дописав в нее новую (третью) строку. Вторую строку, в которой проверялось значение $1$, выделим красным цветом и в дальнейших рассуждениях использовать её не будем.

Можно, конечно, просто переписать таблицу заново, но при заполнении вручную это займет немало времени. Тем более, что чисел, проверка которых окончится неудачей, может быть несколько, и каждый раз записывать новую таблицу затруднительно. При вычислении «на бумаге» красные строки можно просто вычёркивать.

Итак, значение многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ при $x=-1$ равно нулю, т.е. число $-1$ есть корень этого многочлена. После деления многочлена $x^6+2x^5-21x^4-20x^3+71x^2+114x+45$ на бином $x-(-1)=x+1$ получим многочлен $x^5+x^4-22x^3+2x^2+69x+45$, коэффициенты которого взяты из третьей строки табл. №2 (см. пример №1). Результат вычислений можно также представить в такой форме:

\begin{equation}x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^3+2x^2+69x+45) \end{equation}

Продолжим поиск целочисленных корней. Теперь уже нужно искать корни многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Опять-таки, целочисленные корни этого многочлена ищут среди делителей его свободного члена, - числа $45$. Попробуем ещё раз проверить число $-1$. Новую таблицу составлять не будем, а продолжим использование предыдущей табл. №2, т.е. допишем в нее еще одну строку:

Итак, число $-1$ является корнем многочлена $x^5+x^4-22x^3+2x^2+69x+45$. Этот результат можно записать так:

\begin{equation}x^5+x^4-22x^3+2x^2+69x+45=(x+1)(x^4-22x^2+24x+45) \end{equation}

Учитывая равенство (2), равенство (1) можно переписать в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)(x^5+x^4-22x^2+2x^2+69x+45)=\\ & =(x+1)(x+1)(x^4-22x^2+24x+45)=(x+1)^2(x^4-22x^2+24x+45)\end{aligned}\end{equation}

Теперь уже нужно искать корни многочлена $x^4-22x^2+24x+45$, - естественно, среди делителей его свободного члена (числа $45$). Проверим еще раз число $-1$:

Число $-1$ является корнем многочлена $x^4-22x^2+24x+45$. Этот результат можно записать так:

\begin{equation}x^4-22x^2+24x+45=(x+1)(x^3-x^2-21x+45) \end{equation}

С учетом равенства (4), равенство (3) перепишем в такой форме:

\begin{equation}\begin{aligned} & x^6+2x^5-21x^4-20x^3+71x^2+114x+45=(x+1)^2(x^4-22x^3+24x+45)= \\ & =(x+1)^2(x+1)(x^3-x^2-21x+45)=(x+1)^3(x^3-x^2-21x+45)\end{aligned}\end{equation}

Теперь ищем корни многочлена $x^3-x^2-21x+45$. Проверим еще раз число $-1$:

Проверка окончилась неудачей. Выделим шестую строку красным цветом и попробуем проверить иное число, например, число $3$:

В остатке ноль, посему число $3$ - корень рассматриваемого многочлена. Итак, $x^3-x^2-21x+45=(x-3)(x^2+2x-15)$. Теперь равенство (5) можно переписать так.

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок усвоения и закрепления первичных знаний.

Цель урока:

  • Ознакомить учеников с понятием корней многочлена, научить находить их. Усовершенствовать навыки применения схемы Горнера по разложению многочлена по степеням и деления многочлена на двучлен.
  • Научиться находить корни уравнения с помощью схемы Горнера.
  • Развивать абстрактное мышление.
  • Воспитывать вычислительную культуру.
  • Развитие межпредметных связей.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть F n (x)= a n x n +a n-1 x n-1 +...+ a 1 x +a 0 - многочлен относительно x степени n, где a 0 , a 1 ,...,a n –данные числа, причем a 0 не равно 0. Если многочлен F n (x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Q n-1 (x) степени n-1, остаток R есть число, при этом справедливо равенство F n (x)=(x-a) Q n-1 (x) +R. Многочлен F n (x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена F n (x) на двучлен (x-a) равен значению многочлена F n (x) при x=a, т.е. R= P n (a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a .

Горнер Уильям Джордж (1786 - 1837), английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен х - а (схема Горнера).

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +...+ q n-2 x + q n-1)+r

Приравняем коэффициенты при одинаковых степенях:

x n: f 0 = q 0 => q 0 = f 0
x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0
x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1
... ...
x 0: f n = q n - c q n-1 => q n = f n + c q n-1.

Демонстрация схемы Горнера на примере.

Задание 1. С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x 2 + 8 на двучлен x-2.

1 -5 0 8
2 1 2*1+(-5)=-3 2*(-3)+0=-6 2*(-6)+8=-4

f(x) = x 3 - 5x 2 + 8 =(x-2)(x 2 -3x-6)-4, где g(x)= (x 2 -3x-6), r = -4 остаток.

Разложение многочлена по степеням двучлена.

Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2).

В результате должны получить разложение f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12

Схему Горнера часто используют при решении уравнений третьей, четвертой и выших степеней, когда удобно разложить многочлен на двучлен x-a. Число a называют корнем многочлена F n (x) = f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n , если при x=a значение многочлена F n (x) равно нулю: F n (a)=0, т.е. если многочлен делится нацело на двучлен x-a.

Например, число 2 является корнем многочлена F 3 (x)=3x 3 -2x-20, так как F 3 (2)=0. это означает. Что разложение этого многочлена на множители содержит множитель x-2.

F 3 (x)=3x 3 -2x-20=(x-2)(3x 2 +6x+10).

Любой многочлен F n (x) степени n 1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p -ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d , записанное в той же p -ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d -ичными цифрами числа Ad , начиная от младшего разряда к старшему. Все действия необходимо проводить в p -ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” - сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера.

Домашнее задание. Предлагается выполнить два задание.

1-е. Используя схему Горнера разделить многочлен f(x)=2x 5 -x 4 -3x 3 +x-3 на двучлен (x-3).

2-е. Найти целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6.(учитывая, что любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена)

Литература.

  1. Курош А.Г. “Курс высшей алгебры”.
  2. Никольский С.М, Потапов М.К. и др. 10 класс “Алгебра и начала математического анализа”.
  3. http://inf.1september.ru/article.php?ID=200600907.




error: Контент защищен !!