Водород реагирует с кислородом с образованием воды. Водород

Водород (Н) очень легкий химический элемент, с содержанием в Земной коре 0,9% по массе, а в воде 11,19%.

Характеристика водорода

По легкости он первый среди газов. При нормальных условиях безвкусен, бесцветен, и абсолютно без запаха. При попадании в термосферу улетает в космос из-за малого веса.

Во всей вселенной это самый многочисленный химический элемент (75% от всей массы веществ). Настолько, что многие звезды в космическом пространстве состоят полностью из него. Например, Солнце. Его основной компонент - водород. А тепло и свет это итог выделения энергии при слиянии ядер материала. Так же в космосе есть целые облака из его молекул различной величины, плотности и температуры.

Физические свойства

Высокая температура и давление значительно меняют его качества, но при обычных условиях он:

Обладает высокой теплопроводностью, если сравнивать с другими газами,

Нетоксичен и плохо растворим в воде,

С плотностью 0,0899 г/л при 0°С и 1 атм.,

Превращается в жидкость при температуре -252,8°С

Становится твердым при -259,1°С.,

Удельная теплота сгорания 120,9.106 Дж/кг.

Для превращения в жидкость или твердое состояние требуются высокое давление и очень низкие температуры. В сжиженном состоянии он текуч и легок.

Химические свойства

Под давлением и при охлаждении (-252,87 гр. С) водород обретает жидкое состояние, которое по весу легче любого аналога. В нем он занимает меньше места, чем в газообразном виде.

Он типичный неметалл. В лабораториях его получают путем взаимодействия металлов (например, цинка или железа) с разбавленными кислотами. При обычных условиях малоактивен и вступает в реакцию только с активными неметаллами. Водород может отделять кислород из оксидов, и восстанавливать металлы из соединений. Он и его смеси образуют водородную связь с некоторыми элементами.

Газ хорошо растворяется в этаноле и во многих металлах, особенно в палладии. Серебро его не растворяет. Водород может окисляться во время сжигания в кислороде или на воздухе, и при взаимодействии с галогенами.

Во время соединения с кислородом, образуется вода. Если температура при этом обычная, то реакция идет медленно, если выше 550°С - со взрывом (превращается в гремучий газ).

Нахождение водорода в природе

Хотя водорода очень много на нашей планете, но в чистом виде его найти нелегко. Немного можно обнаружить при извержении вулканов, во время добычи нефти и в месте разложения органических веществ.

Больше половины всего количества находится в составе с водой. Так же он входит в структуру нефти, различной глины, горючих газов, животных и растений (присутствие в каждой живой клетке 50% по числу атомов).

Круговорот водорода в природе

Каждый год в водоемах и почве разлагается колоссальное количество (миллиарды тонн) остатков растений и это разложение выплескивает в атмосферу огромную массу водорода. Так же он выделяется при любом брожении, вызываемом бактериями, сжигании и наравне с кислородом участвует в круговороте воды.

Области применения водорода

Элемент активно используется человечеством в своей деятельности, поэтому мы научились получать его в промышленных масштабах для:

Метеорологии, химпроизводства;

Производства маргарина;

Как горючее для ракет (жидкий водород);

Электроэнергетики для охлаждения электрических генераторов;

Сварки и резки металлов.

Масса водорода используется при производстве синтетического бензина (для улучшения качества топлива низкого качества), аммиака, хлороводорода, спиртов, и других материалов. Атомная энергетика активно использует его изотопы.

Препарат «перекись водорода» широко применяют в металлургии, электронной промышленности, целлюлозно-бумажном производстве, при отбеливании льняных и хлопковых тканей, для изготовления красок для волос и косметики, полимеров и в медицине для обработки ран.

«Взрывной» характер этого газа может стать гибельным оружием - водородной бомбой. Ее взрыв сопровождается выбросом огромного количества радиоактивных веществ и губительно для всего живого.

Соприкосновение жидкого водорода и кожных покровов грозит сильным и болезненным обморожением.

Водород - простое вещество H 2 (диводород, дипротий, легкий водород).

Краткая характеристика водорода :

  • Неметалл.
  • Бесцветный газ, трудно поддающийся сжижению.
  • Плохо растворяется в воде.
  • Лучше растворяется в органических растворителях.
  • Хемосорбируется металлами: железом, никелем, платиной, палладием.
  • Сильный восстановитель.
  • Взаимодействует (при высоких температурах) с неметаллами, металлами, оксидами металлов.
  • Наибольшей восстановительной способностью обладает атомный водород H 0 , получаемый при термическом разложении H 2 .
  • Изотопы водорода:
    • 1 H - протий
    • 2 H - дейтерий (D)
    • 3 H - тритий (Т)
  • Относительная молекулярная масса = 2,016
  • Относительная плотность твердого водорода (t=-260°C) = 0,08667
  • Относительная плотность жидкого водорода (t=-253°C) = 0,07108
  • Избыточное давление (н.у.) = 0,08988 г/л
  • t плавления = -259,19°C
  • t кипения = -252,87°C
  • Объемный коэффициент растворимости водорода:
    • (t=0°C) = 2,15;
    • (t=20°C) = 1,82;
    • (t=60°C) = 1,60;

1. Термическое разложение водорода (t=2000-3500°C):
H 2 ↔ 2H 0

2. Взаимодействие водорода с неметаллами :

  • H 2 +F 2 = 2HF (t=-250..+20°C)
  • H 2 +Cl 2 = 2HCl (при сжигании или на свету при комнатной температуре):
    • Cl 2 = 2Cl 0
    • Cl 0 +H 2 = HCl+H 0
    • H 0 +Cl 2 = HCl+Cl 0
  • H 2 +Br 2 = 2HBr (t=350-500°C, катализатор платина)
  • H 2 +I 2 = 2HI (t=350-500°C, катализатор платина)
  • H 2 +O 2 = 2H 2 O:
    • H 2 +O 2 = 2OH 0
    • OH 0 +H 2 = H 2 O+H 0
    • H 0 +O 2 = OH 0 +O 0
    • O 0 +H 2 = OH 0 +H 0
  • H 2 +S = H 2 S (t=150..200°C)
  • 3H 2 +N 2 = 2NH 3 (t=500°C, катализатор железо)
  • 2H 2 +C(кокс) = CH 4 (t=600°C, катализатор платина)
  • H 2 +2C(кокс) = C 2 H 2 (t=1500..2000°C)
  • H 2 +2C(кокс)+N 2 = 2HCN (t более 1800°C)

3. Взаимодействие водорода со сложными веществами :

  • 4H 2 +(Fe II Fe 2 III)O 4 = 3Fe+4H 2 O (t более 570°C)
  • H 2 +Ag 2 SO 4 = 2Ag+H 2 SO 4 (t более 200°C)
  • 4H 2 +2Na 2 SO 4 = Na 2 S+4H 2 O (t = 550-600°C, катализатор Fe 2 O 3)
  • 3H 2 +2BCl 3 = 2B+6HCl (t = 800-1200°C)
  • H 2 +2EuCl 3 = 2EuCl 2 +2HCl (t = 270°C)
  • 4H 2 +CO 2 = CH 4 +2H 2 O (t = 200°C, катализатор CuO 2)
  • H 2 +CaC 2 = Ca+C 2 H 2 (t более 2200°C)
  • H 2 +BaH 2 = Ba(H 2) 2 (t до 0°C, раствор)

4. Участие водорода в окислительно-восстановительных реакциях :

  • 2H 0 (Zn, разб. HCl)+KNO 3 = KNO 2 +H 2 O
  • 8H 0 (Al, конц. KOH)+KNO 3 = NH 3 +KOH+2H 2 O
  • 2H 0 (Zn, разб. HCl)+EuCl 3 = 2EuCl 2 +2HCl
  • 2H 0 (Al)+NaOH(конц.)+Ag 2 S = 2Ag↓+H 2 O+NaHS
  • 2H 0 (Zn, разб. H 2 SO 4)+C 2 N 2 = 2HCN

Водородные соединения

D 2 - дидейтерий :

  • Тяжелый водород.
  • Бесцветный газ, трудно поддаваемый сжижению.
  • Дидейтерия содержится в природной водороде 0,012-0,016% (по массе).
  • В газовой смеси дидейтерия и протия изотопный обмен протекает при высоких температурах.
  • Плохорастворим в обычной и тяжелой воде.
  • С обычной водой изотопный обмен незначителен.
  • Химические свойства аналогичны легкому водороду, но дидейтерий обладает меньшей реакционной способностью.
  • Относительная молекулярная масса = 4,028
  • Относительная плотность жидкого дидейтерия (t=-253°C) = 0,17
  • t плавления = -254,5°C
  • t кипения = -249,49°C

T 2 - дитритий :

  • Сверхтяжелый водород.
  • Бесцветный радиоактивный газ.
  • Период полураспада 12,34 года.
  • В природе дитритий образуется в результате бомбардировки нейтронами космического излучения ядер 14 N, следы дитрития обнаружены в природных водах.
  • Получают дитритий в ядерном реакторе бомбардировкой лития медленными нейтронами.
  • Относительная молекулярная масса = 6,032
  • t плавления = -252,52°C
  • t кипения = -248,12°C

HD - дейтериоводород :

  • Бесцветный газ.
  • Не растворяется в воде.
  • Химические свойства аналогичны H 2 .
  • Относительная молекулярная масса = 3,022
  • Относительная плотность твердого дейтериоводорода (t=-257°C) = 0,146
  • Избыточное давление (н.у.) = 0,135 г/л
  • t плавления = -256,5°C
  • t кипения = -251,02°C

Оксиды водорода

H 2 O - вода :

  • Бесцветная жидкость.
  • По изотопному составу кислорода вода состоит из H 2 16 O с примесями H 2 18 O и H 2 17 O
  • По изотопному составу водорода вода состоит из 1 H 2 O с примесью HDO.
  • Жидкая вода подвергается протолизу (H 3 O + и OH -):
    • H 3 O + (катион оксония) является самой сильной кислотой в водном растворе;
    • OH - (гидроксид-ион) является самым сильным основанием в водном растворе;
    • Вода - самый слабый сопряженный протолит.
  • Со многими веществами вода образует кристаллогидраты.
  • Вода является химически активным веществом.
  • Вода является универсальным жидким растворителем неорганических соединений.
  • Относительная молекулярная масса воды = 18,02
  • Относительная плотность твердой воды (льда) (t=0°C) = 0,917
  • Относительная плотность жидкой воды:
    • (t=0°C) = 0,999841
    • (t=20°C) = 0,998203
    • (t=25°C) = 0,997044
    • (t=50°C) = 0,97180
    • (t=100°C) = 0,95835
  • плотность (н.у.) = 0,8652 г/л
  • t плавления = 0°C
  • t кипения = 100°C
  • Ионное произведение воды (25°C) = 1,008·10 -14

1. Термическое разложение воды:
2H 2 O ↔ 2H 2 +O 2 (выше 1000°C)

D 2 O - оксид дейтерия :

  • Тяжелая вода.
  • Бесцветная гигроскопичная жидкость.
  • Вязкость выше, чем у воды.
  • Смешивается с обычной водой в неограниченных количествах.
  • При изотопном обмене образуется полутяжелая вода HDO.
  • Растворяющая способность ниже, чем у обычной воды.
  • Химические свойства оксида дейтерия аналогичны химическим свойствам воды, но все реакции протекают медленнее.
  • Тяжелая вода присутствует в природной воде (массовое отношение к обычной воде 1:5500).
  • Оксид дейтерия получают многократным электролизом природной воды, при котором тяжелая вода накапливается в остатке электролита.
  • Относительная молекулярная масса тяжелой воды = 20,03
  • Относительная плотность жидкой тяжелой воды (t=11,6°C) = 1,1071
  • Относительная плотность жидкой тяжелой воды (t=25°C) = 1,1042
  • t плавления = 3,813°C
  • t кипения = 101,43°C

T 2 O - оксид трития :

  • Сверхтяжелая вода.
  • Бесцветная жидкость.
  • Вязкость выше, а растворяющая способность ниже, чем у обычной и тяжелой воды.
  • Смешивается с обычной и тяжелой водой в неограниченных количествах.
  • Изотопный обмен с обычной и тяжелой водой приводит к образованию HTO, DTO.
  • Химические свойства сверхтяжелой воды аналогичны химическим свойствам воды, но все реакции протекают еще медленнее, чем в тяжелой воде.
  • Следы оксида трития находят в природной воде и атмосфере.
  • Получают сверхтяжелую воду пропусканием трития над раскаленным оксидом меди CuO.
  • Относительная молекулярная масса сверхтяжелой воды = 22,03
  • t плавления = 4,5°C

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377

  • История открытия водорода

    Если является самым распространенным химическим элементом на Земле, то водород – самый распространенный элемент во всей Вселенной. Наше (и другие звезды) примерно на половину состоит из водорода, а что касается межзвездного газа, то он на 90% состоит из атомов водорода. Немалое место этот химический элемент занимает и на Земле, ведь вместе с кислородом он входит в состав воды, а само его название «водород» происходит от двух древнегреческих слов: «вода» и «рожаю». Помимо воды водород присутствует в большинстве органических веществ и клеток, без него, как и без кислорода, была бы немыслима сама Жизнь.

    История открытия водорода

    Первым среди ученых водород заметил еще великий алхимик и лекарь средневековья Теофраст Парацельс. В своих алхимических опытах, в надежде отыскать «философский камень» смешивая с кислотами Парацельс получил некий неизвестный до того горючий газ. Правда отделить этот газ от воздуха так и не удалось.

    Только спустя полтора века после Парацельса французскому химику Лемери таки удалось отделить водород от воздуха и доказать его горючесть. Правда Лемери так и не понял, что полученный им газ является чистым водородом. Параллельно подобными химическими опытами занимался и русский ученый Ломоносов, но настоящий прорыв в исследовании водорода был сделан английским химиком Генри Кавендишом, которого по праву считают первооткрывателем водорода.

    В 1766 году Кавендишу удалось получить чистый водород, который он называл «горючим воздухом». Еще через 20 лет талантливый французский химик Антуан Лавуазье смог синтезировать воду и выделить из нее этот самый «горючий воздух» – водород. И к слову именно Лавуазье предложил водороду его название – «Hydrogenium», он же «водород».

    Антуан Лавуазье со своей женой, помогавшей ему проводить химические опыты, в том числе и по синтезу водорода.

    В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. То есть иными словами водород и его атомный вес является краеугольным камнем таблицы Менделеева, той точкой опоры, на основе которой великий химик создал свою систему. Поэтому не удивительно, что в таблице Менделеева водород занимает почетное первое место.

    Помимо этого водород имеет такие характеристики:

    • Атомная масса водорода составляет 1,00795.
    • У водорода в наличии три изотопа, каждый из которых обладает индивидуальными свойствами.
    • Водород – легкий элемент имеющий малую плотность.
    • Водород обладает восстановительными и окислительными свойствами.
    • Вступая в с металлами, водород принимает их электрон и стает окислителем. Подобные соединения называются гидратами.

    Водород это газ, молекула его состоит из двух атомов.

    Так схематически выглядит молекула водорода.

    Молекулярный водород, образованный из таких вот двухатомных молекул взрывается при поднесенной горящей спичке. Молекула водорода при взрыве распадается на атомы, которые превращаются в ядра гелия. Именно таким образом происходят на Солнце и других звездах – за счет постоянного распадение молекул водорода наше светило горит и обогревает нас своим теплом.

    Физические свойства водорода

    У водорода в наличие следующие физические свойства:

    • Температура кипения водорода составляет 252,76 °C;
    • А при температуре 259,14 °C он уже начинает плавиться.
    • В воде водород растворяется слабо.
    • Чистый водород – весьма опасное взрывчатое и горючее вещество.
    • Водород легче воздуха в 14,5 раз.

    Химические свойства водорода

    Поскольку водород может быть в разных ситуациях и окислителем и восстановителем его используют для осуществления реакций и синтезов.

    Окислительные свойства водорода взаимодействуют с активными (обычно щелочными и щелочноземельными) металлами, результатом этих взаимодействий является образование гидридов – солеподобных соединений. Впрочем, гидриды образуются и при реакциях водорода с малоактивными металлами.

    Восстановительные свойства водорода обладают способностью восстанавливать металлы до простых веществ из их оксидов, в промышленности это называется водородотермией.

    Как получить водород?

    Среди промышленных средств получения водорода можно выделить:

    • газификацию угля,
    • паровую конверсию метана,
    • электролиз.

    В лаборатории водород можно получить:

    • при гидролизе гидридов металлов,
    • при реакции с водой щелочных и щелочноземельных металлов,
    • при взаимодействии разбавленных кислот с активными металлами.

    Применение водорода

    Так как водород в 14 раз легче воздуха, то в былые времена им начиняли воздушные шары и дирижабли. Но после серии катастроф произошедших с дирижаблями конструкторам пришлось искать водороду замену (напомним, чистый водород – взрывоопасное вещество, и малейшей искры было достаточно, чтобы случился взрыв).

    Взрыв дирижабля Гинденбург в 1937 году, причиной взрыва как раз и стало воспламенение водорода (вследствие короткого замыкания), на котором летал этот огромный дирижабль.

    Поэтому для подобных летательных аппаратов вместо водорода стали использовать гелий, который также легче воздуха, получение гелия более трудоемкое, зато он не такой взрывоопасный как водород.

    Также с помощью водорода производится очистка различных видов топлива, в особенности на основе нефти и нефтепродуктов.

    Водород, видео

    И в завершение образовательное видео по теме нашей статьи.


  • Жидкий

    Водород (лат. Hydrogenium ; обозначается символом H ) — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон. Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

    Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

    Простое вещество водород — H 2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и рядеметаллов: железе, никеле, палладии, платине.

    История

    Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

    Происхождение названия

    Лавуазье дал водороду название hydrogène — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии сломоносовским «кислородом».

    Распространённость

    Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

    Земная кора и живые организмы

    Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

    Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

    Получение

    Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

    Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

    СН 4 + 2Н 2 O = CO 2 + 4Н 2 −165 кДж

    В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

    Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

    В промышленности

    1.Электролиз водных растворов солей:

    2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

    2.Пропускание паров воды над раскаленным коксом при температуре около 1000 °C:

    H 2 O + C ? H 2 + CO

    3.Из природного газа.

    Конверсия с водяным паром:

    CH 4 + H 2 O ? CO + 3H 2 (1000 °C)

    Каталитическое окисление кислородом:

    2CH 4 + O 2 ? 2CO + 4H 2

    4. Крекинг и риформинг углеводородов в процессе переработки нефти.

    В лаборатории

    1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

    Zn + 2HCl → ZnCl 2 + H 2

    2.Взаимодействие кальция с водой:

    Ca + 2H 2 O → Ca(OH) 2 + H 2

    3.Гидролиз гидридов:

    NaH + H 2 O → NaOH + H 2

    4.Действие щелочей на цинк или алюминий:

    2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

    Zn + 2KOH + 2H 2 O → K 2 + H 2

    5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

    2H 3 O + + 2e − → H 2 + 2H 2 O

    Физические свойства

    Водород может существовать в двух формах (модификациях) — в виде орто- и пара- водорода. В молекуле ортоводорода o -H 2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p -H 2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o -H 2 и p -H 2 при заданной температуре называется равновесный водород e -H 2 .

    Разделить модификации водорода можноадсорбциейна активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвездной среды - с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

    Водород — самый лёгкийгаз, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

    Молекула водорода двухатомна — Н 2 . При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9×10 6 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni,Pt,Pdи др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим всеребре.

    Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см 3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н 2 , 0,21 % орто-Н 2 .

    Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см 3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии,пространственная группа P6/mmc, параметры ячейки a =3,75 c =6,12. При высоком давлении водород переходит в металлическое состояние.

    Изотопы

    Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (радиоактивный) (T).

    Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

    Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет. Тритий содержится в природе в очень малых количествах.

    В литературе также приводятся данные об изотопах водорода с массовыми числами 4 — 7 и периодами полураспада 10 −22 — 10 −23 с.

    Природный водород состоит из молекул H 2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D 2 ещё меньше. Отношение концентраций HD и D 2 , примерно, 6400:1.

    Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов.

    Температура
    плавления,
    K

    Температура
    кипения,
    K

    Тройная
    точка,
    K / kPa

    Критическая
    точка,
    K / kPa

    Плотность
    жидкий / газ,
    кг/м³

    Дейтерий и тритий также имеют орто- и пара- модификации: p -D 2 , o -D 2 , p -T 2 , o -T 2 . Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

    Химические свойства

    Доля диссоциировавших молекул водорода

    Молекулы водорода Н 2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

    Н 2 = 2Н − 432 кДж

    Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

    Ca + Н 2 = СаН 2

    и с единственным неметаллом — фтором, образуя фтороводород:

    С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

    О 2 + 2Н 2 = 2Н 2 О

    Он может «отнимать» кислород от некоторых оксидов, например:

    CuO + Н 2 = Cu + Н 2 O

    Записанное уравнение отражает восстановительные свойства водорода.

    N 2 + 3H 2 → 2NH 3

    С галогенами образует галогеноводороды:

    F 2 + H 2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,

    Cl 2 + H 2 → 2HCl, реакция протекает со взрывом, только на свету.

    С сажей взаимодействует при сильном нагревании:

    C + 2H 2 → CH 4

    Взаимодействие со щелочными и щёлочноземельными металлами

    При взаимодействии с активными металлами водород образует гидриды:

    2Na + H 2 → 2NaH

    Ca + H 2 → CaH 2

    Mg + H 2 → MgH 2

    Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

    CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

    Взаимодействие с оксидами металлов (как правило, d-элементов)

    Оксиды восстанавливаются до металлов:

    CuO + H 2 → Cu + H 2 O

    Fe 2 O 3 + 3H 2 → 2Fe + 3H 2 O

    WO 3 + 3H 2 → W + 3H 2 O

    Гидрирование органических соединений

    Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования . Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр.Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

    Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

    Геохимия водорода

    Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

    В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

    В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

    Особенности обращения

    Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водородпожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

    Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

    Экономика

    Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг.

    Применение

    Атомарный водород используется для атомно-водородной сварки.

    Химическая промышленность

    • При производстве аммиака, метанола, мыла и пластмасс
    • При производстве маргарина из жидких растительных масел
    • Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

    Пищевая промышленность

    Авиационная промышленность

    Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколькокатастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

    Топливо

    Водород используют в качестве ракетного топлива.

    Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

    В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

    «Жидкий водород» («ЖВ») — жидкое агрегатное состояние водорода, с низкой удельной плотностью 0.07 г/см³ и криогенными свойствами с точкой замерзания 14.01 K (−259.14 °C) и точкой кипения 20.28 K (−252.87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4-75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % —параводород; 0,21 % — ортоводород. Коэффициент расширения водорода при смене агрегатного состояния на газообразное составляет 848:1 при 20°C.

    Как и для любого другого газа, сжижение водорода приводит к уменьшению его объема. После сжижения «ЖВ» хранится в термически изолированных контейнерах под давлением. Жидкий водород (англ. Liquid hydrogen , LH2 , LH 2 ) активно используется в промышленности, в качестве формы хранения газа, и в космическойотрасли, в качестве ракетного топлива.

    История

    Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским ученым Вильямом Калленом, Гаспар Монж первым получил жидкое состояние оксида серы в 1784 году, Майкл Фарадей первым получил сжиженный аммиак, американский изобретатель Оливер Эванс первым разработал холодильный компрессор в 1805 году, Яков Перкинс первым запатентовал охлаждающую машину в 1834 году и Джон Гори первым в США запатентовалкондиционер в 1851 году. Вернер Сименс предложил концепцию регенеративного охлаждения в 1857 году, Карл Линде запатентовал оборудование для получения жидкого воздуха с использованием каскадного «эффекта расширения Джоуля — Томсона» и регенеративного охлаждения в 1876 году. В 1885 году польскийфизик и химик Зигмунд Вро?блевский опубликовал критическую температуру водорода 33 K, критическое давление 13.3 атм. и точку кипения при 23 K. Впервыеводород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и своего изобретения, cосуда Дьюара. Первый синтез стабильного изомера жидкого водорода — параводорода — был осуществлен Полом Хартеком и Карлом Бонхеффером в 1929 году.

    Спиновые изомеры водорода

    Водород при комнатной температуре состоит в основном из спинового изомера, ортоводорода. После производства, жидкий водород находится в метастабильном состоянии и должен быть преобразован в параводородную форму, для того чтобы избежать взрывоопасной экзотермической реакции, которая имеет место при его изменении при низких температурах. Преобразование в параводородную фазу обычно производится с использованием таких катализаторов, как оксид железа, оксид хрома, активированный уголь, покрытых платиной асбестов, редкоземельных металлов или путем использования урановых или никелевых добавок.

    Использование

    Жидкий водород может быть использован в качестве формы хранения топлива для двигателей внутреннего сгорания и топливных элементов. Различные подлодки(проекты «212А» и «214», Германия) и концепты водородного транспорта были созданы с использованием этой агрегатной формы водорода (см. например «DeepC»или «BMW H2R»). Благодаря близости конструкций, создатели техники на «ЖВ» могут использовать или только модифицировать системы, использующие сжиженный природный газ («СПГ»). Однако из-за более низкой объемной плотности энергии для горения требуется больший объем водорода, чем природного газа. Если жидкий водород используется вместо «СПГ» в поршневых двигателях, обычно требуется более громоздкая топливная система. При прямом впрыске увеличившиеся потери во впускном тракте уменьшают наполнение цилиндров.

    Жидкий водород используется также для охлаждения нейтронов в экспериментах по нейтронному рассеянию. Массы нейтрона и ядра водорода практически равны, поэтому обмен энергией при упругом столкновении наиболее эффективен.

    Преимущества

    Преимуществом использования водорода является «нулевая эмиссия» его применения. Продуктом его взаимодействия с воздухом является вода.

    Препятствия

    Один литр «ЖВ» весит всего 0.07 кг. То есть его удельная плотность составляет 70.99 г/л при 20 K. Жидкий водород требует криогенной технологии хранения, такой как специальные термически изолированные контейнеры и требует особого обращения, что свойственно для всех криогенных материалов. Он близок в этом отношении к жидкому кислороду, но требует большей осторожности из-за пожароопасности. Даже в случае с контейнерами с тепловой изоляцией, его тяжело содержать при той низкой температуре, которая требуется для его сохранения в жидком состоянии (обычно он испаряется со скоростью 1 % в день). При обращении с ним также нужно следовать обычным мерам безопасности при работе с водородом — он достаточно холоден для сжижения воздуха, что взрывоопасно.

    Ракетное топливо

    Жидкий водород является распространенным компонентом ракетных топлив, которое используется для реактивного ускорения ракет-носителей и космических аппаратов. В большинстве жидкостных ракетных двигателях на водороде, он сначала применяется для регенеративного охлаждения сопла и других частей двигателя, перед его смешиванием с окислителем и сжиганием для получения тяги. Используемые современные двигатели на компонентах H 2 /O 2 потребляют переобогащенную водородом топливную смесь, что приводит к некоторому количеству несгоревшего водорода в выхлопе. Кроме увеличения удельного импульсадвигателя за счет уменьшения молекулярного веса, это еще сокращает эрозию сопла и камеры сгорания.

    Такие препятствия использования «ЖВ» в других областях, как криогенная природа и малая плотность, являются также сдерживающим фактором для использования в данном случае. На 2009 год существует только одна ракета-носитель (РН «Дельта-4»), которая целиком является водородной ракетой. В основном «ЖВ» используется либо на верхних ступенях ракет, либо на блоках, которые значительную часть работы по выводу полезной нагрузки в космос выполняют в вакууме. В качестве одной из мер по увеличению плотности этого вида топлива существуют предложения использования шугообразного водорода, то есть полузамерзшей формы «ЖВ».





    error: Контент защищен !!