Учительские университеты. Учительские университеты Лабораторная по физике определение модуля упругости резины

Лабораторная работа 4.

Определение модуля упругости резины.

Теория . Если к однородному стержню, закрепленному на одном конце, приложить силу F вдоль оси стержня, то стержень подвергнется деформации растяжения. Деформацию растяжения характеризуют абсолютным удлинением Δl=l - l 0 ; относительным удлинением . В деформированном теле возникает механическое напряжение σ, равное отношению модуля силы F к площади поперечного сечения тела S:

На упруго деформированные тела распространяется закон Гука: при малых деформациях механическое напряжение σ прямо пропорционально относительному удлинению:

Коэффициент пропорциональности Е, входящий в закон Гука, называется модулем упругости или модулем Юнга. Модуль Юнга показывает, какое механическое напряжение возникает в материале при относительной деформации равной единице, т.е. при увеличении длины образца вдвое. В данной работе надо определить модуль упругости Е (модуль Юнга) резинового шнура. При выполнении работы надо учесть, что сила упругости в деформированном теле численно равна силе тяжести груза, подвешенного к резиновому шнуру: F=mg. Резиновый шнур имеет квадратное сечение, поэтому S=а 2 , где а - сторона квадрата (а=1мм=10 -3 м). Окончательная формула для расчета модуля Юнга имеет вид:

Цель работы : научиться измерять модуль Юнга, используя закон Гука.

Оборудование : резиновый шпур, штатив с муфтой и лапкой, грузы, измерительная линейка.

Ход работы .

1.Опыт№1

Нанести на резиновом шнуре две метки на расстоянии l 0 друг от друга (около 10см) и измерить это расстояние: l 0 = …. см= ….. м.

Закрепить короткий конец шнура в лапке штатива, а к длинному концу подвесить груз массой m 1 = ….г=…..кг.

  1. Снова измерить расстояние между метками на шнуре l 1 = …. см= ….. м. Рассчитайте абсолютное удлинение шнура Δl 1 =l 1 - l 0 =…. см= …..м.
  2. Пользуясь формулой , рассчитать модуль упругости резины.
  3. Е 1 =

2. Опыт №2 (повторить опыт №1 с грузом другой массы и снова рассчитать модуль Юнга).
m
2 = ….г=…..кг.

l 0 = …. см= ….. м

l 2 = …. см= ….. м

Δl 2 =l 2 - l 0 =…. см= …..м.

E 2 =

4. Результаты измерений и вычислений занести в таблицу.

№ опыта

l 0 , м

l, м

Δl, м

m, кг

g, м/с 2

а, м

S, м 2

E, ПА

E ср , Па

Резинами называются сеточные полимеры с гибкими молекулярными цепями.

Резина - продукт специальной обработки (вулканизации) смеси каучука и серы с различными добавками. Резина обладает высокими эластичными свойствами. Имеет относительное удлинение d = 1000% в широком диапазоне температур. Продольный модуль упругости Е = 1- 200 МПа. Объемная сжимаемость мала, а объемный модуль упругости близок модулю упругости минерального масла æ » 10 3 - 2,5*10 3 МПа или воды и зависит от давления (например, наирит при плотности r = = 1,32 г/см 3 имеет модуль объемной упругости æ= 2,27*10 3 МПа) . Коэффициент Пуассона m = 0,4- 0,5 (для металлов m = 0,25- 0,30). Время релаксации у резин t р = 10 -4 с и выше.

Для резины характерны гистерезисные потери мощности, приводящие к нагреву в случае многократных гармонических воздействий. Это снижает ее работоспособность. Для резин характерна также высокая стойкость к истиранию, водонепроницаемость, относительная газонепроницаемость, химическая стойкость, в специальных случаях электроизолирующие свойства, небольшая плотность r = 0,91- 1,9 г/см 3 .

Деформация резин представляет собой сложный процесс. Он разделяется на 3 составляющие: а) упругую деформацию , аналогичную деформации твердых тел и связанную с изменением межатомных и межмолекулярных расстояний; б) высокоэластичную деформацию , связанную с перемещением звеньев молекул без относительного перемещения молекул, как целого (при этом молекулярные клубки раскручиваются и т.п.); в) пластическую деформацию , связанную с относительным перемещением молекул, как целого.

Высокоэластичность свойствена только резинам и некоторым полимерам .

Существенные черты высокоэластичности можно выяснить на однородной без сдвигов деформации. При такой деформации куб со стороной l o превращается в параллелепипед со сторонами l 1, l 2 , l 3 . Выбирают такие переменные l i , называемые кратностями растяжения , в которых изменение формы отделено от изменения объема l i = l i V -1/ 3 . Здесь i = 1,2,3 и V= l 1 l 2 l 3 - объем деформируемого образца. Кратности растяжения удовлетворяют условию l 1 l 2 l 3 = 1. Поэтому только две из них независимы, например l 3 = 1/(l 1 l 2) . Если происходит только изменение объема без изменения формы, когда все ребра изменяются пропорционально, l i = 1.

При одноосном растяжении куб превращается в параллелепипед с длиной l и квадратным сечением: l 1 = l= lV -1/3 ; l 3 = l 2 = l -1/2 .

Под действием приложенной силы F даже при постоянных давлениях и температуре из-за изменения внутренней энергии происходит некоторое увеличение объема резины, составляющее доли процента . Величину высокоэластичной одноосной деформации для l<2,5 можно определить с помощью эмпирической формулы Бартенева

l= 1+ s/E , (3-1)

где Е - модуль Юнга (модуль упругости), s - напряжение.

Резины нашли широкое применение при изготовлении автомобильных шин, гибких шлангов, ремней, ковейерных лент, как разнообразные уплотняющие материалы и др.

На рис. 3.2 показаны некоторые примеры использования резино-технических изделий (РТИ) в промышленности.

Рис.3.2. Использование ремней с резиновой матрицей для передачи движения.

Основой резины является каучук , натуральный (НК) или синтетический (СК). Синтетический каучук был разработан в СССР академиком Лебедевым С.В. в 20-е годы ХХ века.

Для улучшения свойств в него вводят добавки (ингредиенты):

1. Сера, селен или для электротехнических резин сернистые соединения. Они при взаимодействии с каучуком образуют полимерную сетку.

2. Стабилизаторы (противостарители, антиоксиданты), замедляющие процесс старения резины (парафин, воск). Для этой цели могут наноситься наружные пленки.

3. Мягчители (пластификаторы) - парафин, вазелин, битум...

4. Наполнители, усиливающие и инертные. Их вводят для повышения прочности, износостойкости, снижения стоимости.

Усиливающими наполнителями являются углеродистая сажа, белая сажа, повышающие механические свойства. Инертными- мел, тальк, барит. Последние применяют для снижения стоимости резины.

5. Красители.

Вулканизацией называется процесс химического взаимодействия каучука и серы. В результате вулканизации макромолекулы резины имеют строение редкосетчатое. При этом полимеры, входящие в состав резины, при температуре эксплуатации находятся в высокоэластичном состоянии.

При 1-5% S образуется редкая сетка полимера. Резина в этом случае получается высокоэластичной и мягкой. При 30%S образуется твердый материал- эбонит. Во время вулканизации (Т = 160- 200°С под прессом, Т = 130- 140°С открытым способом) изменяется молекулярная структура полимера. Происходит реакция «сшивания» молекул каучука поперечными связями. В этот момент образуется пространственная сетка и возрастает прочность до s вр = 35 МПа и износостойкость. Повышается также твердость. Ее принято оценивать по методу Шора с помощью прибора ТШМ-2. Здесь в образец вдавливается резиновый шарик и твердость оценивается по глубине его погружения под действием заданной нагрузки. Обычные значения твердости по Шору 30- 90. При твердости 30 резина является мягкой, а при твердости 90 – весьма твердой. Резиновые кольца такой твердости герметизируют соединения с перепадом давления до 400 МПа.

Соотношения единиц твердости и модуля упругости при сжатии.

Упругие характеристики резины во многом определяются ее твердостью. В таблице 3.2 приведены соотношения единиц твердости и модуля упругости при сжатии.

В связи с тем, что модуль упругости резины существенно, на три порядка, ниже модуля упругости стали, то это обстоятельство используется при введении различных амортизирующих прокладок. Поскольку именно высокая податливость (упругость) вызывает резкое снижение резонансной частоты механической системы и сильное демпфирование колебаний.

В машиностроении применяют следующие каучуки:

1. Натуральный каучук (НК) , являющийся полимером изопрена. При Т³ 80- 100°С он размягчается; при Т= 200°С- разлагается. Аморфен. В случае длительного хранения или растяжения возможна кристаллизация.

2. Синтетический каучук бутадиеновый (СКБ) , получен по методу Лебедева. Может набухать в растворителях.

3. Синтетический бутадиенстирольный каучук (СКС) - самый распространенный.

Некоторые марки- СКС-10...СКС-50.

Резины СКС-10, СКД относятся к морозостойким.

4. Синтетический каучук изопреновый (СКИ) .

5. Хлоропреновый отечественный каучук наирит. Имеет высокую эластичность, вибростойкость, маслобензостойкость.

6. Синтетический бутадиеннитрильный каучук (СКН) . Некоторые марки СКН- 18, СКН-25, СКН-40. Зарубежные аналоги- хайкар, пербунал . Изготавливают ремни, прокладки уплотнительные, манжеты. Маслобензостойки.

7. Синтетический каучук теплостойкий (СКТ) . Работает при Т= - 60...+250°С.

8. Светоизносостойкие резины выполнены на основе фтор содержащих, этиленпропиленовых каучуков и бутилкаучуков. СКФ-32, СКФ-26, зарубежные аналогикель-Ф, вайтон .

9. Износостойкие каучуки (СКУ) обладают высокой прочностью, эластичностью. Работают при Т= -30...+130°С. Аналоги зарубежные вулколан, адипрен, джентан, урепан .

Изготавливают автошины, конвейерные ленты, обкладки труб и. т.п.

11. Электротехнические резины изготавливают на основе неполярных каучуков НК, СКБ, СКТ и бутил каучука. Электросопротивление их может составлять r v = 10 11 - 10 15 Ом/см.

Электропроводящие резины, применяемые для экранированных кабелей, изготавливают из НК, СКН, наирита, особенно из полярного СКН- 26, введением в состав углеродной сажи и графита. Электросопротивление составляет r v = 10 2 - 10 4 Ом/см.

Существует много марок резин. Например: 15-РИ-10 (на основе НК), 3826 (на основе СКН-26), В-14-1 (на основе СКН), НО-68-1 (на основе наирита), ИРП-1287 (на основе СКФ-26).

При эксплуатации и хранении под действием внешних факторов резина стареет с ухудшением свойств:

1. Озон и атмосферные условия приводят к растрескиванию.

2. Свет вызывает фотоокисление каучуков.

3. При повышенной температуре (»150°С) многие резины теряют прочность после 1- 10 часов нагрева.

4. В случае низких температур резины становятся стеклообразными, резко возрастает их жесткость.

5. Радиация приводит к повышению твердости и продольного модуля упругости, снижению эластичности.

6. В вакууме у некоторых резин теряется масса. Другие СКИ-3, СКД, СКФ-4, СКТ - устойчивы в вакууме.

Обычно предприятия для обрезиненных деталей указывают срок годности в 1 год.

Муниципальное общеобразовательное учреждение

«Ягоднинская средняя общеобразовательная школа»

Методическая разработка лабораторной работы

Учитель физики:

Открытый урок в 10-м классе по теме: лабораторная работа "Измерение модуля упругости резины"

Цели урока: обеспечение более полного усвоения материала, формирование представления научного познания, развития логического мышления, экспериментальных навыков, исследовательских умений; навыков определения погрешностей при измерении физических величин, умения делать правильные выводы по результатам работы.

Оборудование: установка для измерения модуля Юнга резины, динамометр, грузы.

План урока:

I. Орг. момент.

II. Повторение материала, знание которого необходимо для выполнения лабораторной работы.

III. Выполнение лабораторной работы.

1. Порядок выполнения работы (по описанию в учебнике).
2. Определение погрешностей.
3. Выполнение практической части и расчетов.
4. Вывод.

IV. Итог урока.

V. Домашнее задание.

ХОД УРОКА

Учитель: На прошлом уроке вы познакомились с деформациями тел и их характеристиками. Вспомним, что такое деформация?

Учащиеся: Деформация – это изменение формы и размеров тел под действием внешних сил.

Учитель: Окружающие нас тела и мы подвергаемся различным деформациям. Какие виды деформаций вы знаете?

Ученик: Деформации: растяжение, сжатие, кручение, изгиб, сдвиг, срез.

Учитель: А ещё?

Деформации упругие и пластические.

Учитель: Охарактеризуйте их.

Ученик: Упругие деформации исчезают после прекращения действия внешних сил, а пластические деформации сохраняются.

Учитель: Назовите упругие материалы.

Ученик: Сталь, резина, кости, сухожилия, всё человеческое тело.

Учитель: Пластичные.

Ученик: Свинец, алюминий , воск, пластилин, замазка, жевательная резинка.

Учитель: Что возникает в деформированном теле?

Ученик: В деформированном теле появляется сила упругости и механическое напряжение.

Учитель: Какими физическими величинами можно охарактеризовать деформации, например, деформацию растяжения?

Ученик:

1. Абсолютным удлинением

2. Механическим напряжением?

https://pandia.ru/text/78/185/images/image005_26.jpg" width="72" height="57">

Учитель: Что оно показывает?

Ученик: Во сколько раз абсолютное удлинение меньше первоначальной длины образца

Учитель: Что такое Е ?

Ученик: Е – коэффициент пропорциональности или модуль упругости вещества (модуль Юнга).

Учитель: Что вы знаете о модуле Юнга?

Ученик: Модуль Юнга одинаков для образцов любой формы и размеров, изготовленных из данного материала.

Учитель: Что характеризует модуль Юнга?

Ученик: Модуль упругости характеризует механические свойства материала и не зависит от конструкции изготовленных из него деталей.

Учитель: Какие механические свойства присущи веществам?

Ученик: Могут быть хрупкими, пластичными, упругими, прочными.

Учитель: Какие характеристики вещества необходимо учитывать при его практическом применении?

Ученик: Модуль Юнга, механическое напряжение и абсолютное удлинение.

Учитель: А при создании новых веществ?

Ученик: Модуль Юнга.

Учитель: Сегодня вы будете выполнять лабораторную работу по определению модуля Юнга резины. Какова ваша цель?

На примере резины научиться определять модуль упругости любого вещества.

Зная модуль упругости вещества, мы можем говорить о его механических свойствах и практическом применении. Резина широко применяется в различных аспектах нашей жизни. Где применяется резина?

Ученик: В быту: резиновые сапоги, перчатки, коврики, бельевая резинка, пробки, шланги, грелки и прочее.

Ученик: В медицине: жгуты, эластичные бинты, трубки, перчатки, некоторые части приборов.

Ученик: На транспорте и в промышленности: покрышки и шины колёс, ремни передач, изолента, надувные лодки, трапы, уплотнительные кольца и многое другое.

Ученик: В спорте: мячи, ласты, гидрокостюмы, эспандеры и прочее.

Учитель: Говорить о применении резины можно очень много. В каждом конкретном случае резина должна иметь определенные механические свойства.

Перейдем к выполнению работы.

Вы уже обратили внимание, что каждый ряд получил свое задание. Первый ряд работает с бельевой резинкой. Второй ряд – с фрагментами кровоостанавливающего жгута. Третий ряд - с фрагментами эспандера. Таким образом, класс разбит на три группы. Все вы будете определять модуль упругости резины, но каждой группе предлагается провести свое небольшое исследование.

1-ая группа. Определив модуль упругости резины, вы получите результаты, обсудив которые, сделайте вывод о свойствах резины, применяемой для изготовления бельевой резинки.

2-ая группа. Работая с различными фрагментами одного и того же кровоостанавливающего жгута и определив модуль упругости, сделайте вывод о зависимости модуля Юнга от формы и размеров образцов.

3-я группа. Изучить устройство эспандера. Выполнив лабораторную работу, сравнить абсолютное удлинение одной резиновой струны, нескольких струн и всего жгута эспандера. Сделать из этого вывод и, может быть, выступить с какими-то своими предложениями по изготовлению эспандеров.

При измерении физических величин неизбежны погрешности.

Что такое погрешность?

Ученик: Неточность измерения физической величины.

Учитель: Чем вы будете руководствоваться при измерении погрешности?

Ученик: Данными таблицы 1 стр.205 учебника (работа выполняется по описанию, данному в учебнике)

После завершения работы представитель каждой группы делает сообщения о её результатах.

Представитель первой группы:

При выполнении лабораторной работы мы получили значения модуля упругости бельевой резинки:

Е1 = 2,24 · 105 Па
Е2 = 5· 107 Па
Е3 = 7,5· 105 Па

Модуль упругости бельевой резинки зависит от механических свойств резины и оплетающих её нитей, а также от способа переплетения нитей.

Вывод: бельевая резинка очень широко применяется в белье, в детской, спортивной и верхней одежде. Поэтому для её изготовления применяются различные сорта резины, нитей и различные способы их переплетения.

Представитель второй группы:

Наши результаты:

Е1 = 7,5 · 106 Па
Е1 = 7,5 · 106 Па
Е1 = 7,5 · 106 Па

Модуль Юнга одинаков для всех тел любой формы и размеров, изготовленных их данного материала

Представитель третьей группы:

Наши результаты:

Е1 = 7,9 · 107 Па
Е2 = 7,53 · 107 Па
Е3 = 7,81 · 107 Па

Для изготовления эспандеров можно использовать резину разных сортов. Жгут эспандера набирается из отдельных струн. Мы это рассмотрели. Чем больше струн, тем больше площадь поперечного сечения жгута, меньше его абсолютное удлинение. Зная зависимость свойств жгута от его размера и материала, можно изготовить эспандеры для различных физкультурных групп.

Итог урока.

Учитель: Чтобы создавать и применять различные материалы, необходимо знать их механические свойства. Механические свойства материала характеризует модуль упругости. Сегодня вы практически его определили для резины и сделали свои выводы. В чем они заключаются?

Ученик: Я научился определять модуль упругости вещества, оценивать погрешности в своей работе, сделал научные предположения о механических свойствах материалов (в частности, резины) и практической направленности применения этих знаний.

Учащиеся сдают листы контроля.

На дом: § 20-22 повторить.

Цель работы: научиться экспериментально определять модуль упругости (модуль Юнга) резины.

Средства обучения:

· оборудование: штатив, набор грузов, резиновый шнур, линейка, динамометр.

· методические указания к выполнению лабораторной работы, калькулятор.

Ход выполнения лабораторной работы

Допуск к выполнению лабораторной работы

Выполните тест:

1. Деформация – изменение…

А. формы и положения в пространстве; Б. формы и размеров тела;

В. Объема и положения в пространстве; Г. нет верного ответа.

2. Деформация, при которой происходит смещение слоев тела относительно друг друга, называется деформацией….

А. сдвига; Б. растяжения; В. изгиба; Г. нет верного ответа.

3. Деформация, которая полностью исчезает после прекращения действия внешних сил, называется….

А. упругой; Б. неупругой; В. пластичной; Г. нет верного ответа.

4. Зависимость физических свойств от направления внутри кристалла, называется…

А. анизотропией;Б. энтропией; В. изотропией;Г. нет верного ответа.

1. На рисунке представлена диаграмма растяжения материала. Укажите область текучести.

А. 0-А;Б. А-В;Г. В-С;Д. С-D.

Ответы занесите в таблицу:

Теоретическая часть

Выведем формулу для вычисления модуля Юнга: закон Гука σ=Е·|ε|, где Е – модуль Юнга. Отсюда (1). Зная, что (2) и (3) и подставив формулы (2) и (3) в формулу (1) получим: (4), где: Е – модуль Юнга, Па; F – вес груза, Н;

х 0 – длина между метками на недеформированном шнуре, м;

S – площадь поперечного сечения шнура в растянутом состоянии, м 2 ;

Δх – абсолютное удлинение шнура, м.

Вычисления и измерения

1. Закрепите резиновый шнур в штативе и нанесите на шнуре две метки А и В. Не растягивая шнур, измерьте расстояние между метками.

2. Подвесьте груз к нижнему концу резинового шнура, предварительно определив его вес. Измерьте расстояние между метками на шнуре и размеры сечения шнура в растянутом состоянии.

3. Выполните те же измерения, подвесив два и три груза.

4. Вычислите модуль Юнга по формуле (4) для каждого опыта.

5. Результаты измерений и вычислений занесите в отчетную таблицу 1



Е 1 = =___________Па,

Е 2 = =___________Па,

Е 3 = =___________Па,

Е ср = =___________Па.

5. Проанализируйте полученный результат Е ср, сравнив его с табличным значением модуля Юнга резины Е табл. =7МПа. Обобщите результаты своей работы. Сделайте вывод по проделанной работе.

Вывод: _______________________________________________________________________

____________________________________________________________________________________________________________________________________________________________

Контрольные вопросы

1. Что такое деформация? Какие виды деформации вам известны?

2. Зависит ли модуль упругости от сечения резинового шнура и его длины?

3. Какая величина измеряется в этой работе с наименьшей погрешностью?

4. Как влияет изменение температуры резинового шнура на величину модуля упругости?

Ответы:

Изм.
Лист
№ докум.
Подпись
Дата
Лист
Лабораторная работа № 4
Лабораторная работа №4

Наш робот распознал:
Лабораторная работа 2

Измерение модуля упругости резины

Работа - веселее некуда: обычно первые се минуть

Хлопками резины по всех концах класса и приглушенными яш. гласами Чего ты делаешь! Сейчас получишь... и так далее. Чтобы быстрее покончить с этим необходимым ритуалом и перейти к тому, что учебнике, проведем небольшой мысленный жепернченг.

Возьмем мысленно рези новы! шнур и прицепим I мысленно к нему стограммовый грузик. Натянем мысленно шнур за грузик и разожмем мысленно пальцы. Совет Ответьте можно письменно наследи пне вопросы: 1 По какой траектории полетит грузик и что случится в конце пути

С его хрупкими крючками 2 как о грен I нр юг па ллр грушка:

Б лабораторный шкаф, чст;ркамн и термометрам:

В голова впереди сидящего, и сможет ли она после так проделать что-либо мысленно

Короче, мы в десятом классе, ребята. Начинаем отвыкать от дурачеств. Л чтобы вышеописанное аеселье не случилось без злого умысла, помните: грузики на шнур вешать осторожно, шнур не растягивать больше, чем надо; отправляясь на камчатку за линейкой, убеждаться, что конструкция не прицепилась к лилжаку н не тянется за вами взводимой катапультой. Наиболее опасливые могут придти на урок а хоккейном шлеме - школьной программой это не возбраняется.

Приятно пользоваться уже готовой формулой, по еще Суть приятнее знать, откуда эта формула взялась. Л получили мы гтроблемьг ее из закона Гука. Если помните, закон этот справедлив при ых деформациях тела еше один аргумент в пользу того, резину сильно растягивать нельзя и выглядит так:

Н модуль Юнга, он отсюда равен

Механическое напряжение о по определен

Следующим образом:

Знак модуля в формуле уг женни, и при сжатии тела: так как V модуля используем обычные скобки

Такова наша рабочая формула. Последнее препятствие, которое вам предстоит преодолеть это определение К I плошали гиперемии о а

Пня иш р.;: I .,-.:м сечсиле кр>. .те. ,. ее.....ри-оо;. о.о.мое гч.ш

Резина-5 аЬ ширину умножаем на толщину. Шнуре греуюльн и вообще фигурным поперечным сечением вам вряд ли п

Расстояние 1, м.07

Расстояние 1, м 0.088

Ширина шшр,1 и, м 0,01

Толщина шнура/, м 0.0005

Площадь поперечного сечения К. м 50-

Сила упругости У. Н з

Вычислено

Инструментальная гкм рс.....чс1 ь цигейки. Д,1, м 0.0001

Погрешность отсчета длины, Д-,1, м 0,0005

Абсолютная погрешность. А1. м 0,0006

Инструментальная погрешность микрометра. ЛЛ. м +0,000005

Погрешность отсчета толщины. Л.Л м +0.000005

Абсолютная погрешность Ли м 0,00001

Им:...-.:; ;1Ш10С1к динамометра, ДР. Н 0,005

Погрешность отсчета силы, Л-,Р. 11 0,05

Лбео.икч пан погрешность ЛК. Н 0,055

Модуль Юнга У. Па 2,3х о

Относительная погрешность е, 14

Абсолютная погрешность ЛГ. Па.1,22x10

Площадь поперечного сечения шнура: 5 л Ь

5 0,01 м 0.0005 м 0,000005 м2 5х 10 мг.

Модуль Юнга: Е,.,.

7 2.3x10 Па.

С 5х106м20,088м-0.07м

Е Расчет погрешности в нашем примере осложняется тем, что, как вы уже поняли, шнур имеет прямоугольное сечение: ширтк с: о мы измерили линейкой, и ю.нпннч микрометром, то есть приборами с различной точностью. Впрочем, при известной внимательности в последующем расчете разобраться нетрудно. Погрешность ичмерчнин:

Д1 - Д1 + 4,1; Д1 0,0001 м + 0,0005 м 0,0006 м; Ь ДКЛ + АЬ; АЬ 0,000005 м - 0,000005 м - 0,00001 м: ДГ - Д,Г + ДР; ДР 0,005 Н + 0,05 Н 0,055 11. Относительная погрешность: ДР Д! Д1 Дй. Д1 Е Р +1+ а+ Ь +21-1
0.055 П 0,0006 м 0.0006 м 0.00001 м 0,0006 м

Е ЗН + 0,07 м + 0,01м 0,0005 м 0,088 м - 0,07 м

0,018 + 0,008 + 0,06 + 0,02 + 0,033 - 0,14 14 Досол Ю1 пая погрешность: ДЕ - Ее; ДЕ 2,3х106 Па 0,14 3,22х105. Ответ: Е 2,3x10 3,22x10 Па.





error: Контент защищен !!