Ядерные изомеры. Ядерная изомерия

Изомерами называются атомные ядра, имеющие одинаковое число нейтронов и протонов, но различные физические свойства, в частности различные периоды полураспада.

Рис. 6.1. Изомерный γ-переход в ядре 115 In.

Времена жизни γ-радиоактивных ядер обычно имеют порядок 10 -12 –10 -17 с. В некоторых случаях при сочетании высокой степени запрета с малой энергией γ-перехода могут наблюдаться γ-радиоактивные ядра с временами жизни макроскопического порядка (до нескольких часов, а иногда и больше). Такие долгоживущие возбужденные состояния ядер называются изомерами . Характерным примером изомера может служить изотоп индия 115 In (рис. 6.1). Основное состояние 115 In имеет J P = 9/2 + . Первый возбужденный уровень имеет энергию, равную 335 кэВ, и спин-четность J P = 1/2 - . Поэтому переход между этими состояниями происходит лишь посредством испускания М4 γ-кванта. Этот переход настолько сильно запрещен, что период полураспада возбужденного состояния оказывается равным 4.5 часа.
Явление ядерной изомерии было открыто в 1921 г. О. Ганном, обнаружившим, что существуют два радиоактивных вещества, имеющие одинаковые массовые числа A и порядковый номер Z, но различающиеся периодом полураспада. В дальнейшем было показано, что это было изомерное состояние 234m Pa. Согласно Вайцзеккеру (Naturwiss. 24, 813, 1936) изомерия ядер встречается каждый раз, когда момент количества движения ядра в возбужденном состоянии с низкой энергией возбуждения отличается от момента количества движения в любом состоянии, имеющем меньшую энергию возбуждения на несколько единиц ћ. Изомерное (метастабильное) состояние определили как возбужденное состояние с измеримым временем жизни. По мере совершенствования экспериментальных методов γ-спектроскопии измеримые периоды полураспада понизились до 10 -12 -10 -15 с.

Таблица 6.1

Возбужденные состояния 19 F

Энергия состояния, кэВ Спин-чётность Период полураспада
0.0 1/2+ стабильный
109.894 1/2– 0.591 нс
197.143 5/2+ 89.3 нс
1345.67 5/2– 2.86 пс
1458.7 3/2– 62 фс
1554.038 3/2+ 3.5 фс
2779.849 9/2+ 194 фс
3908.17 3/2+ 6 фс
3998.7 7/2– 13 фс
4032.5 9/2– 46 фс
4377.700 7/2+ < 7.6 фс
4549.9 5/2+ < 35 фс
4556.1 3/2– 12 фс
4648 13/2+ 2.6 пс
4682.5 5/2– 10.7 фс
5106.6 5/2+ < 21 фс
5337 1/2(+) ≤ 0.07 фс
5418 7/2– 2.6 эВ
5463,5 7/2+ ≤ 0.18 фс
5500.7 3/2+ 4 кэВ
5535 5/2+
5621 5/2– < 0.9 фс
5938 1/2+
6070 7/2+ 1.2 кэВ
6088 3/2– 4 кэВ
6100 9/2–
6160.6 7/2– 3.7 эВ
6255 1/2+ 8 кэВ
6282 5/2+ 2.4 кэВ
6330 7/2+ 2.4 кэВ
6429 1/2– 280 кэВ
6496.7 3/2+

Изомерные состояния следует ожидать там, где оболочечные уровни, близкие друг другу по энергии, сильно различаются значениями спинов. Именно в этих областях и находятся так называемые «острова изомерии». Так, наличие изомера у приведенного выше изотопа 115 In обусловлено тем, что в нем не хватает одного протона до замкнутой оболочки Z = 50), т. е. имеется одна протонная «дырка». В основном состоянии эта дырка в подоболочке 1g 9/2 , а в возбужденном - в подоболочке 1p 1/2 . Такая ситуация типична. Острова изомерии расположены непосредственно перед магическими числами 50, 82 и 126 со стороны меньших Z и N. Так, изомерные состояния наблюдаются в ядрах 86 Rb (N = 49), 131 Te (N = 79, что близко к 82), 199 Hg (Z = 80, что близко к 82) и т. д. Отметим, что, наряду с рассмотренными, существуют и другие причины появления изомерных состояний. В настоящее время обнаружено большое число изомеров, имеющих период полураспада от нескольких секунд до 3·10 6 лет (210m Bi). Многие изотопы имеют несколько изомерных состояний. В таблице 6.2 приведены параметры долгоживущих изомеров (T 1/2 > год).

Таблица 6.2

Параметры изомерных состояний атомных ядер

Z-XX-A N Энергия изомерного состояния, МэВ J P T 1/2 , Г , распростра­ненность Моды распада
73-Ta-180 107 0.077 9 - 0.012%
>1.2·10 15 лет
83-Bi-210 127 0.271 9 - 3.04·10 6 лет α 100%
75-Re-186 111 0.149 8 + 2·10 5 лет IT 100%
67-Ho-166 99 0.006 7 - 1.2·10 3 лет β - 100%
47-Ag-108 61 0.109 6 + 418 лет е 91.30%,
IT 8.70%
77-Ir-192 115 0.168 11 - 241 год IT 100%
95-Am-242 147 0.049 5 - 141 год SF <4.47·10 -9 %,
IT 99.55%,
α 0.45%
50-Sn-121 71 0.006 11/2 - 43.9 лет IT 77.60%,
β - 22.40%
72-Hf-178 106 2.446 16 + 31 год IT 100%
41-Nb-93 52 0.031 1/2 - 16.13 лет IT 100%
48-Cd-113 65 0.264 11/2 - 14.1 лет β - 99.86%,
IT 0.14%
45-Rh-102 57 0.141 6 + ≈2.9 лет е 99.77%,
IT 0.23%
99-Es-247 148 625 дней α

Во все нижележащие состояния для них сильно подавлена правилами запрета по спину и чётности . В частности, подавлены переходы с высокой мультипольностью (то есть большим изменением спина, необходимым для перехода в нижележащее состояние) и малой энергией перехода. Иногда появление изомеров связано с существенным различием формы ядра в разных энергетических состояниях (как у 180 Hf).

Изомеры обозначаются буквой m (от англ. metastable ) в индексе массового числа (например, 80m Br) или в правом верхнем индексе (например, 80 Br m ). Если нуклид имеет более одного метастабильного возбуждённого состояния, они обозначаются в порядке роста энергии буквами m , n , p , q и далее по алфавиту, либо буквой m с добавлением номера: m 1, m 2 и т. д.

Наибольший интерес представляют относительно стабильные изомеры с временами полураспада от 10 −6 сек до многих лет.

История

Понятие изомерии атомных ядер возникло в 1921 году , когда немецкий физик О. Ган , изучая бета-распад тория-234 , известного в то время как «уран-X1» (UX 1), открыл новое радиоактивное вещество «уран-Z» (UZ), которое ни по химическим свойствам, ни по массовому числу не отличалось от известного уже «урана-X2» (UX 2), однако имело другой период полураспада. В современных обозначениях, UZ и UX 2 соответствуют изомерному и основному состояниям изотопа 234 Pa . В 1935 году Б. В. Курчатовым , И. В. Курчатовым , Л. В. Мысовским и Л. И. Русиновым был обнаружен изомер искусственного изотопа брома 80 Br, образующийся наряду с основным состоянием ядра при захвате нейтронов стабильным 79 Br. Через три года под руководством И. В. Курчатова было установлено, что изомерный переход брома-80 происходит в основном путём внутренней конверсии , а не испусканием гамма-квантов . Всё это положило основу систематического изучения данного явления. Теоретически ядерная изомерия была описана Карлом Вайцзеккером в 1936 году .

Физические свойства

Распад изомерных состояний может осуществляться путём:

  • изомерного перехода в основное состояние (испусканием гамма-кванта или посредством внутренней конверсии);
  • бета-распада и электронного захвата ;
  • спонтанного деления (для тяжёлых ядер);
  • излучения протона (для высоковозбуждённых изомеров).

Вероятность конкретного варианта распада определяется внутренней структурой ядра и его энергетическими уровнями (а также уровнями ядер - возможных продуктов распада).

В некоторых областях значений массовых чисел существуют т. н. острова изомерии (в этих областях изомеры встречаются особенно часто). Это явление объясняется оболочечной моделью ядра , которая предсказывает существование в нечётных ядрах энергетически близких ядерных уровней с большим различием спинов, когда число протонов или нейтронов близко к магическим числам .

Некоторые примеры

См. также

Примечания

  1. Otto Hahn. Über eine neue radioaktive Substanz im Uran (нем.) // Berichte der Deutschen Chemischen Gesellschaft (англ.) русск. : magazin. - 1921. - Bd. 54 , Nr. 6 . - S. 1131-1142 . - DOI :10.1002/cber.19210540602 .
  2. D. E. Alburger. Nuclear isomerism // Handbuch der physik / S. Flügge. - Springer-Verlag, 1957. - Т. 42: Kernreaktionen III / Nuclear Reactions III. - P. 1.
  3. J. V. Kourtchatov, B. V. Kourtchatov, L. V. Misowski, L. I. Roussinov. Sur un cas de radioactivité artificielle provoquée par un bombardement de neutrons, sans capture du neutron (фр.) // Comptes rendus hebdomadaires des séances de l"Académie des sciences (англ.) русск. : magazine. - 1935. - Vol. 200 . - P. 1201-1203 .
  4. , с. 617.
  5. C. von Weizsäcker. Metastabile Zustände der Atomkerne (англ.) // Naturwissenschaften (англ.) русск. : journal. - 1936. - Vol. 24 , no. 51 . - P. 813-814 .
  6. Константин Мухин. Экзотическая ядерная физика для любознательных (рус.) // Наука и жизнь . - 2017. - № 4 . - С. 96-100 .
  7. G. Audi et al. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 1997, vol. 624, page 1-124. Архивированная копия (неопр.) (недоступная ссылка) . Дата обращения 17 марта 2008.

Исторические сведения

Понятие изомерии атомных ядер возникло в 1921 году , когда немецкий физик О. Ган открыл новое радиоактивное вещество уран-Z (UZ), которое ни по химическим свойствам, ни по массовому числу не отличалось от известного уже урана-X2 (UX 2), однако имело другой период полураспада. В современных обозначениях, UZ и UX 2 соответствуют основному и изомерному состояниям изотопа . В 1935 году Б. В. Курчатовым , И. В. Курчатовым , Л. В. Мысовским и Л. И. Русиновым был обнаружен изомер искусственного изотопа брома 80 Br, образующийся наряду с основным состоянием ядра при захвате нейтронов стабильным 79 Br. Это положило основу систематического изучения данного явления.

Теоретические сведения

Изомерные состояния отличаются от обычных возбуждённых состояний ядер тем, что вероятность перехода во все нижележащие состояния для них сильно подавлена правилами запрета по спину и чётности . В частности, подавлены переходы с высокой мультипольностью (то есть большим изменением спина, необходимым для перехода в нижележащее состояние) и малой энергией перехода.

Иногда появление изомеров связано с существенным различием формы ядра в разных энергетических состояниях (как у 180 Hf).

Наибольший интерес представляют относительно стабильные изомеры с временами полураспада от 10 −6 сек до многих лет. Изомеры обозначаются буквой m (от англ. metastable ) в индексе массового числа (например, 80m Br) или в правом верхнем индексе (например, 80 Br m ). Если нуклид имеет более одного метастабильного возбуждённого состояния, они обозначаются в порядке роста энергии буквами m , n , p , q и далее по алфавиту, либо буквой m с добавлением номера: m 1, m 2 и т. д.

Некоторые примеры

Примечания

Литература

  1. Л. И. Русинов // Изомерия атомных ядер. УФН. 1961. Т. 73. № 4. С. 615-630 .
  2. Е. В. Ткаля. // Индуцированный распад ядерного изомера 178m2 Hf и «изомерная бомба». УФН. 2005. Т. 175. № 5. С. 555-561 .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Изомерия атомных ядер" в других словарях:

    - (от греч. isos равный, одинаковый и meros доля, часть), существование у нек рых ат. ядер метастабильных состояний с относительно большими временами жизни. Нек рые ат. ядра имеют неск. изомерных состояний с разными временами жизни. Понятие «И. а.… … Физическая энциклопедия

    Явление, состоящее в существовании долгоживущих возбужденных (метастабильных) состояний атомных ядер. Переход в невозбужденное состояние происходит за счет? излучения либо конверсии внутренней … Большой Энциклопедический словарь

    Существование у некоторых атомных ядер метастабильных состояний возбуждённых состояний с относительно большими временами жизни (см. Ядро атомное). Некоторые атомные ядра имеют несколько изомерных состояний с разными временами жизни.… … Большая советская энциклопедия

    Явление, состоящее в существовании долгоживущих возбуждённых (метастабильных) состояний атомных ядер. Переход в невозбуждённое состояние происходит за счёт γ излучения либо конверсии внутренней. * * * ИЗОМЕРИЯ АТОМНЫХ ЯДЕР ИЗОМЕРИЯ АТОМНЫХ ЯДЕР,… … Энциклопедический словарь

    Явление, состоящее в существовании долгоживущих возбуждённых (метастабильных) состояний атомных ядер. Переход в невозбуждённое состояние происходит за счёт у)гаииа) излучения либо конверсии внутренней … Естествознание. Энциклопедический словарь

    Существование ядер нек рых нуклидов в метастабильных возбужденных энергетич. состояниях. Нуклиды с метастабильными ядрами обозначают латинской буквой тв верх. индексе слева от массового числа. Так, метастабильный изомер 236Np обозначают 236mNp. И … Химическая энциклопедия

    Явление искусственных радиоактивных изотопов, выдающееся мировое открытие (1935) русского ученого И. В. Курчатова.

ИЗОМЕРИЯ АТОМНЫХ ЯДЕР, существование у некоторых атомных ядер наряду с основным состоянием долгоживущих (метастабильных) возбуждённых состояний, называемых изомерными. Исторически к изомерным относят состояния с временами жизни, которые могут быть измерены непосредственно (более 0,01 мкс). Явление изомерии возникает из-за резкого различия структуры соседних состояний (возбуждённого и основного), что приводит к значительному уменьшению вероятности распада возбуждённого состояния (иногда на много порядков).

Первое указание на существование ядерных изомеров было получено в 1921 О. Ганом, обнаружившим среди продуктов распада урана радиоактивное вещество, которое при одном и том же атомном номере Z и массовом числе А имело два совершенно разных пути радиоактивного распада. Однако датой открытия изомерии атомных ядер считается 1935 год, когда группой советских учёных под руководством И. В. Курчатова было обнаружено при облучении брома медленными нейтронами образование трёх радиоактивных изотопов с различными периодами полураспада.

Впоследствии выяснилось, что это явление достаточно широко распространено, известно уже несколько сотен изомерных состояний, причём у некоторых ядер может быть по несколько таких состояний. Например, у ядра гафния с А = 175 обнаружено 5 состояний с временами жизни более 0,1 мкс.

Непременным условием существования изомерного состояния ядра является наличие какого-либо запрета для радиационных переходов из изомерного в состояния с более низкой энергией. Известен целый ряд особенностей ядерной структуры, вызывающих такой запрет: различие угловых моментов (спинов) изомерного и основного состояний, приводящее к радиационным переходам высокой мультипольности, разная ориентация спинов относительно выделенной оси в ядре, различная форма ядер в обоих состояниях.

Распад изомерных состояний обычно сопровождается испусканием электронов или γ-квантов, в результате образуется то же ядро, но в состоянии с меньшей энергией. Иногда более вероятен бета-распад. Изомеры тяжёлых элементов могут распадаться путём самопроизвольного деления. Изомерные состояния ядер с высокой степенью вероятности спонтанного деления называют делящимися изомерами. Известно около 30 ядер (изотопы U, Pu, Am, Cm, Bk), для которых вероятность спонтанного деления в изомерном состоянии больше, чем в основном, примерно в 10 26 раз.

Изомерия атомных ядер является важным источником сведений о структуре атомных ядер; изучение изомеров помогло установить порядок заполнения ядерных оболочек. По временам жизни изомеров судят о величинах запретов для радиационных переходов и их связи с ядерной структурой.

Ядерные изомеры находят и практическое применение. Например, в активационном анализе их образование в ряде случаев позволяет достигнуть большей чувствительности метода. Долгоживущие ядерные изомеры рассматриваются как возможные в будущем аккумуляторы энергии.

Лит.: Корсунский М. И. Изомерия атомных ядер. М., 1954; Поликанов С. М. Изомерия формы атомных ядер. М., 1977.





error: Контент защищен !!