Бреет брадобрея. Парадокс бертрана рассела

Самым знаменитым из открытых уже в прошлом веке парадоксов является антиномия, обнаруженная Бертраном Расселом и сообщенная им в письме к Г. Ферге. Рассел открыл свой парадокс, относящийся к области логики и математики, в 1902г. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики 3. Цермело (1871-- 1953) и Д. Гильберт. Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2000. - С. 512-514. . Этот парадокс вызвал в математике, по мнению Гильберта, эффект полной катастрофы. Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями. Оказалось, что в теории множеств Кантора, которая с восторгом была принята большинством математиков, имеются странные противоречия, от которых невозможно, или, по крайней мере, очень трудно, избавиться. Парадокс Рассела особенно ярко выявил эти противоречия. Над его разрешением, так же, как и над разрешением других найденных парадоксов канторовской теории множеств, трудились самые выдающиеся математики тех лет. Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но из какого места и в каком направлении? Курант Р., Роббинс Г. Что такое математика? - гл. II, § 4.5.

Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования? С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики Л. Френкель и И. Бар-Хиллел уже без всяких оговорок утверждали: «Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели». Современный американский логик X. Карри писал немного позднее об этом парадоксе: «В терминах логики, известной в XIX в., положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка» Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2000. - С. 512-514..

Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса. Можно говорить о множествах различных объектов, например, о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго -- каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий. Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов -- это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.

Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.

Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов. Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о не существовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.

Парадокс Рассела замечателен своей крайней общностью Курант Р., Роббинс Г. Что такое математика? - гл. II, § 4.5. . Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множество» и «элемент множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.

Другие варианты парадокса Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства.

Это становится очевидным, если переформулировать парадокс в чисто логических терминах. О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе.

Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, не приложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально. Логическая, касающаяся свойств разновидность антиномии Рассела, столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.

Рассел предложил также следующий популярный вариант открытого им парадокса Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона-Аристотеля // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2002. - С. 239- 242.. Представим, что совет одной деревни так определил обязанности брадобрея: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот брадобрей бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно.

Рассуждение о брадобрее опирается на допущение, что такой брадобрей существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами. Обязанности брадобрея не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является все-таки парадоксальным. Условие, которому должен удовлетворять деревенский брадобрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2000. - С. 512-514..

Рассуждение о брадобрее может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге. Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя? Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.

Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс. Допустим, что в какой-то момент был составлен каталог, скажем К1, включающий, все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К1 не является ее решением. Он не упоминает один из таких каталогов -- самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим КЗ, который опять-таки не полон из-за того, что не упоминает самого себя. И далее без конца.

Можно упомянуть еще один логический парадокс -- "парадокс голландских мэров", сходный с парадоксом брадобрея. Каждый муниципалитет в Голландии должен иметь мэра, и два разных муниципалитета не могут иметь одного и того же мэра. Иногда оказывается, что мэр не проживает в своем муниципалитете. Допустим, что издан закон, согласно которому некоторая территория S выделяется исключительно для таких мэров, которые не живут в своих муниципалитетах, и предписывающий всем этим мэрам поселиться на этой территории. Допустим, далее, что этих мэров оказалось столько, что территория S сама образует отдельный муниципалитет. Где должен проживать мэр этого Особого Муниципалитета S? Простое рассуждение показывает, что если мэр Особого Муниципалитета проживает на территории S, то он не должен проживать там, и наоборот, если он не проживает на территории, то он как раз и должен жить на этой территории. То, что этот парадокс аналогичен парадоксу брадобрея, совершенно очевидно.

Рассел одним из первых предложил вариант решения “своего” парадокса. Предложенное им решение, получило название "теории типов": множество (класс) и его элементы относятся к различным логическим типам, тип множества выше типа его элементов, что устраняет парадокс Рассела (теория типов был использована Расселом и для решения знаменитого парадокса "Лжец"). Многие математики, однако, не приняли расселовское решение, считая, что оно накладывает слишком жесткие ограничения на математические утверждения Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона-Аристотеля // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2002. - С. 239- 242..

Аналогично обстоит дело и с другими логическими парадоксами. «Антиномии логики, -- пишет фон Вригт, -- озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления» Вригт Г.Х. фон. Логика и философия в XX веке // Вопр. философии. 1992. № 8..

Всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли само себя в качестве элемента? Если да, то, по определению , оно не должно быть элементом - противоречие. Если нет - то, по определению , оно должно быть элементом - вновь противоречие.

Противоречие в парадоксе Рассела возникает из-за использования в рассуждении внутренне противоречивого понятия множества всех множеств и представления о возможности неограниченного применения законов классической логики при работе с множествами. Для преодоления этого парадокса было предложено несколько путей. Наиболее известный состоит в предъявлении для теории множеств непротиворечивой формализации , по отношению к которой являлись бы допустимыми все «действительно нужные» (в некотором смысле) способы оперирования с множествами. В рамках такой формализации утверждение о существовании множества всех множеств было бы невыводимым.

Действительно, допустим, что множество всех множеств существует. Тогда, согласно аксиоме выделения , должно существовать и множество , элементами которого являются те и только те множества, которые не содержат себя в качестве элемента. Однако предположение о существовании множества приводит к парадоксу Рассела. Следовательно, ввиду непротиворечивости теории , утверждение о существовании множества невыводимо в этой теории, что и требовалось доказать.

В ходе реализации описанной программы «спасения» теории множеств было предложено несколько возможных её аксиоматизаций (теория Цермело - Френкеля ZF, теория Неймана - Бернайса - Гёделя NBG и т. д.), однако ни для одной из этих теорий до настоящего момента не найдено доказательства непротиворечивости. Более того, как показал Гёдель, разработав ряд теорем о неполноте , такого доказательства не может существовать (в некотором смысле).

Другой реакцией на открытие парадокса Рассела явился интуиционизм Л. Э. Я. Брауэра .

Варианты формулировок

Существует много популярных формулировок этого парадокса. Одна из них традиционно называется парадоксом брадобрея и звучит так:

Одному деревенскому брадобрею приказали «брить всякого, кто сам не бреется, и не брить того, кто сам бреется» . Как он должен поступить с самим собой?

Еще один вариант:

В одной стране вышел указ: «Мэры всех городов должны жить не в своем городе, а в специальном Городе мэров» . Где должен жить мэр Города мэров?

И ещё один:

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылок на самих себя. Должен ли такой каталог включать ссылку на себя?

См. также

Литература

  • Курант Р. , Роббинс Г. Что такое математика? - гл. II, § 4.5
  • Мирошниченко П. Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2000. - С. 512-514.
  • Катречко С. Л. Расселовский парадокс брадобрея и диалектика Платона - Аристотеля // Современная логика: проблемы теории, истории и применения в науке. - СПб., 2002. - С. 239-242.
  • Мартин Гарднер А ну-ка, догадайся! = Aha! Gotcha. Paradoxes to puzzle and delight. - М .: Мир , 1984. - С. 22-23. - 213 с.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс Рассела" в других словарях:

    - (греч. paradoxos неожиданный, странный) в широком смысле: утверждение, резко расходящееся с общепринятым, устоявшимся мнением, отрицание того, что представляется «безусловно правильным»; в более узком смысле два противоположных утверждения, для… … Философская энциклопедия

    Парадокс Рассела открытая в 1903 году Бертраном Расселом и позднее независимо переоткрытая Э. Цермело теоретико множественная антиномия, демонстрирующая несовершенство языка наивной теории множеств Г. Кантора, а не ее противоречивость. Антиномия… … Википедия

    парадокс - ПАРАДОКС (от греч. para вне и doxa мнение). 1) В широком (внелогическом) смысле все то, что так или иначе вступает в конфликт (расходится) с общепринятым мнением, подтвержденным традицией, законом, правилом, нормой или здравым смыслом.… … Энциклопедия эпистемологии и философии науки

    Положение, которое сначала еще не является очевидным, однако, вопреки ожиданиям, выражает истину. В античной логике парадоксом называли утверждение, многозначность которого относится прежде всего к его правильности или неправильности. В… … Философская энциклопедия

    - (парадокс класса всех фундированных классов) парадокс в теории множеств, являющийся обобщением парадокса Бурали Форти. Назван именем русского математика Д. Мириманова. Содержание 1 Формулировка … Википедия

    Демонстрирует, что предположение о существовании множества всех порядковых чисел ведёт к противоречиям и, следовательно, противоречивой является теория множеств, в которой построение такого множества возможно. Содержание 1 Формулировка 2 История … Википедия

    - (от греч. parádoxes неожиданный, странный) неожиданное, непривычное (хотя бы по форме) суждение (высказывание, предложение), резко расходящееся с общепринятым, традиционным мнением по данному вопросу. В этом смысле эпитет «парадоксальный» … Большая советская энциклопедия

    Парадокс Кантора парадокс теории множеств, который демонстрирует, что предположение о существовании множества всех множеств ведёт к противоречиям и, следовательно, противоречивой является теория, в которой построение такого множества… … Википедия

    У этого термина существуют и другие значения, см. Парадокс (значения). Роберт Бойль. Схема доказательства того, что вечного двигателя не существует Парадокс … Википедия

Книги

  • Крушение метафизической концепции универсальности предметной области в логике. Контроверза Фреге-Шредер , Б. В. Бирюков. В настоящей книге рассматривается драматическая история математической логики, связанная с понятием "универсума рассуждения" - предметной области в логике. Освещается коллизия взглядов двух…

Парадокс Рассела (антиномия Рассела , также парадокс Рассела - Цермело ) - открытый в 1901 году Бертраном Расселом теоретико-множественный парадокс (антиномия), демонстрирующий противоречивость логической системы Фреге , являвшейся ранней попыткой формализации наивной теории множеств Георга Кантора . Был открыт ранее, но не опубликован Эрнстом Цермело .

На неформальном языке парадокс можно описать следующим образом. Условимся называть множество «обычным», если оно не является своим собственным элементом. Например, множество всех людей является «обычным», так как само множество - не человек. Примером «необычного» множества является множество всех множеств , так как оно само является множеством, а следовательно, само является собственным элементом .

Можно рассмотреть множество, состоящее только из всех «обычных» множеств, такое множество называется расселовским множеством . Парадокс возникает при попытке определить, является ли это множество «обычным» или нет, то есть содержит ли оно себя в качестве элемента. Есть две возможности.

  • С одной стороны, если оно «обычное», то оно должно включать себя в качестве элемента, так как оно по определению состоит из всех «обычных» множеств. Но тогда оно не может быть «обычным», так как «обычные» множества - это те, которые себя не включают.
  • Остаётся предположить, что это множество «необычное». Однако оно не может включать себя в качестве элемента, так как оно по определению должно состоять только из «обычных» множеств. Но если оно не включает себя в качестве элемента, то это «обычное» множество.

В любом случае получается противоречие .

Энциклопедичный YouTube

    1 / 5

    ✪ Лекция 1. Определение множества. Законы де Моргана. Парадокс Рассела. Теорема Вейерштрасса

    ✪ 3 Парадокс Рассела

    ✪ Бертран Рассел Совет будущим поколениям

    ✪ Лекция 21: Наивная теория множеств и нечёткая логика

    ✪ Парадокс Монти Холла - Numberphile

    Субтитры

Формулировка парадокса

Парадокс Рассела можно сформулировать в наивной теории множеств . Следовательно, наивная теория множеств является противоречивой . Противоречив фрагмент наивной теории множеств, который можно определить как теорию первого порядка с бинарным отношением принадлежности ∈ {\displaystyle \in } и схемой выделения : для каждой логической формулы с одной свободной переменной в наивной теории множеств есть аксиома

∃ y ∀ x (x ∈ y ⟺ P (x)) {\displaystyle \exists y\forall x(x\in y\iff P(x))} .

Эта схема аксиом говорит, что для всякого условия P (x) {\displaystyle P(x)} существует множество y , {\displaystyle y,} состоящее из тех x , {\displaystyle x,} которые удовлетворяют условию P (x) {\displaystyle P(x)} .

Этого оказывается достаточно, чтобы сформулировать парадокс Рассела следующим образом. Пусть P (x) {\displaystyle P(x)} есть формула x ∉ x . {\displaystyle x\notin x.} (То есть P (x) {\displaystyle P(x)} означает, что множество x {\displaystyle x} не содержит себя в качестве элемента, или, в нашей терминологии, является «обычным» множеством.) Тогда, по аксиоме выделения, найдётся множество y {\displaystyle y} (расселовское множество) такое, что

∀ x (x ∈ y ⟺ x ∉ x) {\displaystyle \forall x(x\in y\iff x\notin x)} .

Так как это верно для любого x , {\displaystyle x,} то верно и для x = y . {\displaystyle x=y.} То есть

y ∈ y ⟺ y ∉ y . {\displaystyle y\in y\iff y\notin y.}

Из этого следует, что в наивной теории множеств выводится противоречие .

Парадокс не возник бы, если предположить, что расселовского множества не существует. Однако само такое предположение парадоксально: в канторовской теории множеств считается, что любое свойство определяет множество элементов, удовлетворяющих этому свойству. Так как свойство множества быть «обычным» выглядит корректно определённым, то должно существовать множество всех «обычных» множеств. Сейчас такая теория называется наивной теорией множеств .

Популярные версии парадокса

Существует несколько вариантов парадокса Рассела. В отличие от самого парадокса, они, как правило, не могут быть выражены на формальном языке .

Парадокс лжеца

Парадокс Рассела связан с известным ещё с античных времён парадоксом лжеца, который заключается в следующем вопросе. Дано высказывание:

Данное высказывание - ложно.

Истинно ли это высказывание или нет? Легко показать, что это высказывание не может быть ни истинным, ни ложным.

Рассел про этот парадокс писал :

Сам Рассел так объяснял парадокс лжеца. Чтобы говорить что-нибудь о высказываниях, надо сначала определить само понятие «высказывания», при этом не используя не определённых пока понятий. Таким образом, можно определить высказывания первого типа, которые ничего не говорят о высказываниях. Потом можно определить высказывания второго типа, которые говорят о высказываниях первого типа, и так далее. Высказывание же «данное высказывание - ложно» не попадает ни под одно из этих определений, и таким образом не имеет смысла .

Парадокс брадобрея

Рассел упоминает следующий вариант парадокса, сформулированный в виде загадки, которую ему кто-то подсказал .

Пусть в некой деревне живёт брадобрей, который бреет всех жителей деревни, которые не бреются сами, и только их. Бреет ли брадобрей сам себя?

Любой ответ приводит к противоречию. Рассел замечает, что этот парадокс не эквивалентен его парадоксу и легко решается . Действительно, точно так же, как парадокс Рассела показывает, что не существует расселовского множества, парадокс брадобрея показывает, что такого брадобрея просто не существует. Разница состоит в том, что в несуществовании такого брадобрея ничего удивительного нет: не для любого свойства найдётся брадобрей, который бреет людей, обладающих этим свойством. Однако то, что не существует множества элементов, заданных некоторым вполне определённым свойством, противоречит наивному представлению о множествах и требует объяснения .

Вариант о каталогах

Наиболее близким по формулировке к парадоксу Рассела является следующий вариант его изложения :

Библиографические каталоги - это книги, которые описывают другие книги. Некоторые каталоги могут описывать другие каталоги. Некоторые каталоги могут описывать даже сами себя. Можно ли составить каталог всех каталогов, которые не описывают сами себя?

Парадокс возникает при попытке решить, должен ли этот каталог описывать сам себя. Несмотря на кажущуюся близость формулировок (это фактически парадокс Рассела, в котором вместо множеств используются каталоги), этот парадокс, так же, как и парадокс брадобрея, разрешается просто: такой каталог составить нельзя.

Парадокс Греллинга - Нельсона

Этот парадокс был сформулирован немецкими математиками Куртом Греллингом и Леонардом Нельсоном в 1908 году. Он фактически является переводом первоначального варианта парадокса Рассела, изложенного им в терминах логики предикатов (см. письмо к Фреге ), на нематематический язык.

Будем называть прилагательное рефлексивным , если это прилагательное обладает свойством, определяемым этим прилагательным. Например, прилагательные «русское», «многосложное» - обладают свойствами, которые они определяют (прилагательное «русское» является русским, а прилагательное «многосложное» является многосложным), поэтому они являются рефлексивными, а прилагательные «немецкое», «односложное» - являются нерефлексивными . Будет ли прилагательное «нерефлексивное» рефлексивным или нет?

Любой ответ приводит к противоречию . В отличие от парадокса брадобрея, решение этого парадокса не такое простое. Нельзя просто сказать, что такого прилагательного («нерефлексивный») не существует, так как мы его только что определили. Парадокс возникает из-за того, что определение термина «нерефлексивный» некорректно само по себе. Определение этого термина зависит от значения прилагательного, к которому оно применяется. А так как слово «нерефлексивный» само является прилагательным в определении, возникает порочный круг .

История

Рассел, вероятно, открыл свой парадокс в мае или июне 1901 года . Согласно самому Расселу, он пытался найти ошибку в доказательстве Кантора того парадоксального факта (известного как парадокс Кантора), что не существует максимального кардинального числа (или же множества всех множеств). В результате Рассел получил более простой парадокс . Рассел сообщил свой парадокс другим логикам, в частности Уайтхеду и Пеано . В своём письме к Фреге 16 июня 1902 года он писал, что обнаружил противоречие в «Исчислении понятий » - книге Фреге, опубликованной в 1879 году. Он изложил свой парадокс в терминах логики, а потом в терминах теории множеств, используя определение Фреге для функции :

Я испытал трудности только в одном месте. Вы утверждаете (стр. 17), что функция может сама выступать в качестве неизвестного. Раньше я тоже так считал. Но теперь такой взгляд мне кажется сомнительным из-за следующего противоречия. Пусть w предикат: «быть предикатом, который не приложим к самому себе». Может ли w быть приложим к самому себе? Из любого ответа следует обратное. Следовательно, мы должны заключить, что w - не предикат. Аналогично не существует класса (как целого) тех классов, которые, взятые как целое, не принадлежат себе. Отсюда я заключаю, что иногда определённое множество не формирует целостного образования.

Оригинальный текст (нем.)

Nur in einem Punkte ist mir eine Schwierigkeit begegnet. Sie behaupten (S. 17) es könne auch die Funktion das unbestimmte Element bilden. Dies habe ich früher geglaubt, jedoch jetzt scheint mir diese Ansicht zweifelhaft, wegen des folgenden Widerspruchs: Sei w das Prädicat, ein Prädicat zu sein welches von sich selbst nicht prädicirt werden kann. Kann man w von sich selbst prädiciren? Aus jeder Antwort folgt das Gegentheil. Deshalb muss man schließen dass w kein Prädicat ist. Ebenso giebt es keine Klasse (als Ganzes) derjenigen Klassen die als Ganze sich selber nicht angehören. Daraus schliesse ich dass unter gewissen Umständen eine definierbare Menge kein Ganzes bildet .

Фреге получил письмо как раз в то время, когда завершил работу над вторым томом «Основных законов арифметики» (нем. Grundgesetze der Arithmetik ). У Фреге не было времени исправить свою теорию множеств. Он лишь добавил приложение ко второму тому с изложением и своим анализом парадокса, которое начиналось с знаменитого замечания:

Вряд ли с учёным может приключиться что-нибудь худшее, чем если у него из-под ног выбьют почву в тот самый момент, когда он завершит свой труд. Именно в таком положении оказался я, получив письмо от Бертрана Рассела, когда моя работа уже была завершена .

Оригинальный текст (нем.)

Einem wissenschaftlichen Schriftsteller kann kaum etwas Unerwünschteres begegnen, als daß ihm nach Vollendung einer Arbeit eine der Grundlagen seines Baues erschüttert wird. In diese Lage wurde ich durch einen Brief des Herrn Bertrand Russell versetzt, als der Druck dieses Bandes sich seinem Ende näherte .

z ∈ { x: P (x) } ⟺ P (z) {\displaystyle z\in \{x\colon P(x)\}\iff P(z)} ,

которая говорила, что можно построить множество элементов, удовлетворяющих свойству P (x) , {\displaystyle P(x),} он предложил использовать следующую аксиому:

z ∈ { x: P (x) } ⟺ P (z) & z ≠ { x: P (x) } {\displaystyle z\in \{x\colon P(x)\}\iff P(z)\ \&\ z\neq \{x\colon P(x)\}} ,

таким образом исключив возможность для множества быть элементом самого себя. Однако небольшая [какая? ] модификация парадокса Рассела доказывает, что и эта аксиома тоже приводит к противоречию .

Рассел опубликовал свой парадокс в своей книге «Принципы математики » в 1903 году .

Ниже приведены несколько из возможных подходов к построению системы аксиом, свободной от расселовских парадоксов.

Теория типов Рассела

Первым, кто предложил теорию, свободную от парадокса Рассела, был сам Рассел. Он разработал теорию типов, первая версия которой появилась в книге Рассела и Уайтхеда «Принципы математики » в 1903 году . В основе этой теории лежит следующая идея: простые объекты в этой теории имеют тип 0, множества простых объектов имеют тип 1, множества множеств простых объектов имеют тип 2 и так далее. Таким образом, ни одно множество не может иметь себя в качестве элемента. Ни множество всех множеств , ни расселовское множество не могут быть определены в этой теории. Аналогичная иерархия вводится для высказываний и свойств. Высказывания о простых объектах принадлежат типу 1, высказывания о свойствах высказываний типа 1 принадлежат типу 2 и так далее. В общем, функция по определению принадлежит типу более высокому, чем переменные, от которых она зависит. Такой подход позволяет избавиться не только от парадокса Рассела, но и многих других парадоксов, включая парадокс лжеца (), парадокс Греллинга - Нельсона, парадокс Бурали-Форти . Рассел и Уайтхед показали, как свести к аксиомам теории типов всю математику, в своём трёхтомном труде «Principia Mathematica », выпущенном в 1910-1913 годах .

Однако такой подход встретил трудности. В частности, возникают проблемы при определении таких понятий, как точная верхняя грань для множеств вещественных чисел. По определению точная верхняя грань есть наименьшая из всех верхних граней. Следовательно, при определении точной верхней грани используется множество вещественных чисел. Значит, точная верхняя грань является объектом более высокого типа, чем вещественные числа. А значит, сама не является вещественным числом. Чтобы избежать этого, пришлось вводить так называемую аксиому сводимости . Из-за её произвольности аксиому сводимости отказывались принимать многие математики, да и сам Рассел называл её дефектом своей теории. Кроме того, теория оказалась очень сложной. В итоге она не получила широкого применения .

Теория множеств Цермело - Френкеля

Самым известным подходом к аксиоматизации математики является теория множеств Цермело - Френкеля (ZF), которая возникла как расширение теории Цермело (1908). В отличие от Рассела, Цермело сохранил логические принципы, а изменил только аксиомы теории множеств . Идея этого подхода заключается в том, что допускается использовать только множества, построенные из уже построенных множеств при помощи определённого набора аксиом . Так, например, одна из аксиом Цермело говорит, что можно построить множество всех подмножеств данного множества (аксиома булеана). Другая аксиома (схема выделения ) говорит, что из каждого множества можно выделить подмножество элементов, обладающих данным свойством. В этом состоит главное отличие теории множеств Цермело от наивной теории множеств: в наивной теории множеств можно рассмотреть множество всех элементов, обладающих данным свойством, а в теории множеств Цермело - только выделить подмножество из уже построенного множества. В теории множеств Цермело нельзя построить множество всех множеств . Таким образом и расселовское множество там построить нельзя .

Классы

Иногда в математике бывает полезно рассматривать все множества как единое целое, например, чтобы рассматривать совокупность всех групп . Для этого теория множеств может быть расширена понятием класса , как, например, в системе Неймана - Бернайса - Гёделя (NBG). В этой теории совокупность всех множеств является классом . Однако, этот класс не является множеством и не является элементом никакого класса, что позволяет избежать парадокса Рассела .

Более сильной системой, позволяющей брать кванторы по классам, а не только по множествам, является, например, теория множеств Морса - Келли (MK) . В этой теории основным понятием является понятие класса , а не множества . Множествами в этой теории считаются такие классы, которые сами являются элементами каких-то классов . В этой теории формула z ∈ { x: P (x) } {\displaystyle z\in \{x\colon P(x)\}} считается эквивалентной формуле

P (z) & ∃ y . z ∈ y {\displaystyle P(z)\ \&\ \exists y.z\in y} .

Так как ∃ y . z ∈ y {\displaystyle \exists y.z\in y} в этой теории значит, что класс z {\displaystyle z} является множеством , эту формулу надо понимать как то, что { x: P (x) } {\displaystyle \{x\colon P(x)\}} является классом всех множеств (а не классов) z {\displaystyle z} , таких что P (z) {\displaystyle P(z)} . Парадокс Рассела в этой теории разрешается тем, что не любой класс является множеством .

Можно пойти дальше и рассматривать совокупности классов - конгломераты , совокупности конгломератов и так далее .

Влияние на математику

Аксиоматизация математики

Парадокс Рассела, вместе с другими математическими антиномиями , открытыми в начале XX века, стимулировал пересмотр оснований математики, результатом которого явилось построение аксиоматических теорий для обоснования математики, некоторые из которых упомянуты выше.

Во всех построенных новых аксиоматических теориях парадоксы, известные к середине XX века (в том числе парадокс Рассела), были устранены . Однако доказать, что новые подобные парадоксы не могут быть обнаружены в будущем (в этом состоит проблема непротиворечивости построенных аксиоматических теорий), оказалось, в современном понимании этой задачи, невозможно (см. Теоремы Гёделя о неполноте).

Интуиционизм

Параллельно возникло новое течение в математике, называемое интуиционизмом , основателем которого является Л. Э. Я. Брауэр . Интуиционизм возник независимо от парадокса Рассела и других антиномий. Однако открытие антиномий в теории множеств усилило недоверие интуиционистов к логическим принципам и ускорило формирование интуиционизма . Основной тезис интуиционизма говорит, что для доказательства существования некоторого объекта необходимо предъявить способ его построения . Интуиционисты отвергают такие абстрактные понятия, как множество всех множеств. Интуиционизм отрицает закон исключенного третьего , впрочем, необходимо отметить, что закон исключенного третьего не нужен для вывода противоречия из антиномии Рассела или любой другой (в любой антиномии доказывается, что A {\displaystyle A} влечёт отрицание A {\displaystyle A} и отрицание A {\displaystyle A} влечёт A , {\displaystyle A,} однако из (A ⇒ ¬ A) & (¬ A ⇒ A) {\displaystyle (A\Rightarrow \neg A)\&(\neg A\Rightarrow A)} даже в интуиционисткой логике следует противоречие) . Стоит также отметить, что в более поздних аксиоматизациях интуиционисткой математики были обнаружены парадоксы, аналогичные расселовскому, как, например, парадокс Жирара в первоначальной формулировке Мартина-Лёфа .

Диагональный аргумент (самоприменимость)

Несмотря на то что рассуждения Рассела приводят к парадоксу, основная идея этого рассуждения часто используется в доказательстве математических теорем. Как было уже сказано выше, Рассел получил свой парадокс, анализируя доказательство Кантора о несуществовании наибольшего кардинального числа . Этот факт противоречит существованию множества всех множеств, так как его мощность должна быть максимальной. Тем не менее, по теореме Кантора , множество всех подмножеств данного множества имеет бо́льшую мощность, чем само множество. Доказательство этого факта основано на следующем диагональном аргументе ?! :

Пусть есть взаимнооднозначное соответствие , которое каждому элементу x {\displaystyle x} множества X {\displaystyle X} ставит в соответствие подмножество s x {\displaystyle s_{x}} множества X . {\displaystyle X.} Пусть d {\displaystyle d} будет множеством, состоящим из элементов x {\displaystyle x} таких, что x ∈ s x {\displaystyle x\in s_{x}} (диагональное множество ). Тогда дополнение этого множества s = d ¯ {\displaystyle s={\overline {d}}} не может быть ни одним из s x . {\displaystyle s_{x}.} А следовательно, соответствие было не взаимнооднозначным.

Кантор использовал диагональный аргумент при доказательстве несчётности действительных чисел в 1891 году. (Это не первое его доказательство несчётности действительных чисел, но наиболее простое) .

Связанные парадоксы

Самоприменимость используется во многих парадоксах, кроме рассмотренных выше:

  • Парадокс всемогущества - средневековый вопрос: «Может ли всемогущий бог создать камень, который он сам не сможет поднять?»
  • Парадокс Бурали-Форти (1897) - аналог парадокса Кантора для ординальных чисел .
  • Парадокс Мириманова (1917) - обобщение парадокса Бурали-Форти для класса всех фундированных классов .
  • Парадокс Ришара (1905) - семантический парадокс, показывающий важность разделения языка математики и метаматематики.
  • Парадокс Берри (1906) - опубликованный Расселом упрощённый вариант парадокса Ришара.
  • Парадокс Клини - Россера (1935) - формулировка парадокса Ришара в терминах λ-исчисления .
  • Парадокс Карри (1941) - упрощение парадокса Клини - Россера.
  • Парадокс Жирара (1972) - формулировка парадокса Бурали-Форти в терминах интуиционистской теории типов .
  • - полушутливый парадокс, напоминающий парадокс Берри.

Примечания

  1. Godehard Link (2004), One hundred years of Russell"s paradox , с. 350, ISBN 9783110174380 , .
  2. Антиномия Рассела // Словарь по логике. Ивин А. А., Никифоров А. Л. - М.: Туманит, ВЛАДОС, 1997. - 384 с. - ISBN 5-691-00099-3 .
  3. Andrew David Irvine, Harry Deutsch. Russell"s Paradox // The Stanford Encyclopedia of Philosophy / Edward N. Zalta. - 2014-01-01.
  4. Антиномия - статья из Математической энциклопедии . А. Г. Драгалин
  5. А. С. Герасимов. Курс математической логики и теории вычислимости . - Издание третье, исправленное и дополненное. - Санкт-Петербург: ЛЕМА, 2011. - С. 124-126. - 284 с.

Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия, обнаруженная Б. Расселом. Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Д. Гильберта, «эффект полной катастрофы». Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями. Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для устранения антиномии. Явно оказался необходимым отход от привычных способов мышления.

Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса. Можно говорить о множествах различных объектов, например о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго - каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий. Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов - это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента. Очевидно, что каждое множество является либо обычным, либо необычным.

Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то согласно своему определению должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в Качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.

Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие.

Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о несуществовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.

Парадокс Рассела замечателен своей крайней общностью. Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий «множества» и «элемента множества». Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.

Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства. Это становится очевидным, если переформулировать парадокс в чисто логических терминах.

О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет. Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе. Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, что неприложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально, Логическая, касающаяся свойств разновидность антиномии Рассела столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.

Б. Рассел предложил также следующий популярный вариант открытого им парадокса. «Брадобрей бреет всех тех и только тех жителей города, которые не бреются сами. Кто бреет брадобрея?» Парадокс брадобрея заключается в том, что, якобы, нельзя ответить на этот вопрос.

Чтобы понять ситуацию, разобьем жителей города на три группы. Это разбиение показано на левом рисунке: те, кто бреется самостоятельно, - сверху; те, кого бреют, - снизу; кто вообще не бреется (монахи, дети, женщины…) - вне эллипса.

Рассмотрим сначала действие условия (1). Пусть брадобрей бреет всех тех, которые не сами бреются, то есть всю нижнюю половину эллипса (штриховка отмечает клиентов брадобрея). Но условие (1) разрешает ему брить и того, кто сам бреется, то есть самого себя. Условие (1) разрешает ему расположиться в верхней половине эллипса, где жители сами бреются, и брить себя там. Это показано на среднем рисунке.

Если же действует условие (2), и брадобрей бреет только тех, которые не сами бреются, это означает, что он бреет часть нижней половины эллипса и не бреет себя, то есть не находится в верхней половине эллипса. Но жители из нижней половины могут быть побриты не брадобреем, а кем-то еще. И брадобрей может находиться среди этих людей (правый рисунок). Так что брадобрея может брить его приятель, а брадобрей будет брить заштрихованную часть нижней половины эллипса.

Но если действуют оба условия, (1) и (2), то брадобрею нет места в эллипсе. Он, значит, не бреется вообще. И тут нет никакого парадокса. Он, сталь быть, либо монах, либо робот, либо ребенок, либо женщина, либо не житель города… А если в городе нет никого, кроме бреющихся мужчин, и, стало быть, внешность эллипса пуста, то брадобрей, удовлетворяющий условиям (1) и (2), попросту не существует. Нелепо спрашивать в этом случае, кто его бреет. Множество таких брадобреев - пусто.

И тут мы заметим, что заданный вопрос, «Кто бреет брадобрея?», был некорректен с самого начала так же, как классический вопрос: «Зачем ты бьешь своего отца?» Прежде, чем спрашивать, кто бреет брадобрея, надо получить согласие, что его кто-то бреет.

Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя? Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать. Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.

Допустим, что в какой-то момент был составлен каталог, скажем К1 включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием K1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что K1 не является ее решением. Он не упоминает один из таких каталогов - самого себя. Включив в K1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1 но не сам К2. Добавив к К2 такое упоминание, получим К3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.

Владелец парикмахерской в одном селе повесил следующее объявление: "Брею тех и только тех жителей села, кто не бреется сам". Спрашивается, кто бреет брадобрея?

Развитие математической логики особенно активизировалось в XX нашего века в связи с развитием вычислительной техники и программирования.

Ø Определение Математическая логика - это современная форма логики, которая полностью опирается на формальные математические методы. Она изучает только умозаключения со строго определенными объектами и суждениями, для которых можно однозначно решить, истинны они или ложны.

Основным (неопределяемым) понятием математической логики является понятие «простого высказывания ». Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным.

Ø Определение Высказывание - это повествовательное предложение, о котором можно сказать, что оно истинно или ложно.

Высказывания могут быть истинными И или ложными Л.

Пример : Земля - планета Солнечной системы. (Истинно); Каждый параллелограмм есть квадрат (Ложно)

Существуют высказывания, о которых нельзя говорить с уверенностью, истинны они или ложны. «Сегодня хорошая погода»(кому как)

Пример Высказывание "Идет дождь" - простое, а истинное оно или ложное зависит от того, какая погода сейчас за окном. Если действительно льет дождь, то высказывание - истинное, а если солнечно, и бесполезно ждать дождя, то высказывание "Идет дождь" будет ложным.

Пример “ ” – не высказывание (неизвестно, какие значения принимает ).

“Студент второго курса” не высказывание

Ø Определение Элементарные высказывания не могут быть выражены через другие высказывания.

Ø Определение Составные высказывания –высказывания, которые можно выразить с помощью элементарных высказываний.

Пример “Число 22 четное” – элементарное высказывание.

Существуют два основных подхода к установлению истинности высказываний: эмпирический (опытный) и логический.

При эмпирическом подходе истинность высказывания устанавливается с помощью наблюдений, измерений, проведением экспериментов.

Логический подход заключается в том, что истинность высказывания устанавливается на основе истинности других высказываний, то есть без обращения к фактам, к их содержанию, то есть формально. Такой подход основан на выявлении и использовании логических связей между высказываниями, входящими в рассуждение.

2.2 Логика высказываний

Прежде всего нужно определиться с понятиями, потому что один и тот же раздел часто называют по-разному: математическая логика, логика высказываний (предложений), символическая логика, двузначная логика, пропозициональная логика, булева алгебра...


Ø Определение Логика высказываний - раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логических операций конъюнкции ("и"), дизъюнкции ("или"), отрицания ("не"), импликации ("если..., то...") и др.

Ø Определение Исчисление высказываний – это аксиоматическая логическая система, интерпретацией которой является алгебра высказываний.

Наибольший интерес представляет построение формальной системы, которая среди всех возможных высказываний выделяет такие, которые являются логическими законами (правильно построенными рассуждениями, логическими умозаключениями, тавтологиями, общезначимыми высказываниями).

Формальные теории, не пользуясь естественным (разговорным) языком, нуждаются в собственном формальном языке, на котором записываются встречающиеся в нем выражения.

Ø Определение Формальная система, порождающая высказывания, которые являются тавтологиями и только их, называются исчислением высказываний (ИВ).

Формальная система ИВ определяется:

Какие символы лучше использовать для обозначения логических связок?

Остановимся на следующих обозначениях: отрицание, конъюнкция, дизъюнкция, импликация и эквивалентность. Обычно логические значения результатов применения связок записываются в виде таблиц (т.н. таблицы истинности).

2.3Логические связки..................................................

В естественном языке роль связок при составлении сложных предложений из простых играют следующие грамматические средства:

союзы «и», «или», «не»;

слова «если …, то», «либо … либо»,

«тогда и только тогда, когда» и др.

В логике высказываний логические связки, используемые для составления сложных высказываний, обязаны быть определены точно.

Рассмотрим логические связки (операции) над высказываниями, при которых истинностные значения составных высказываний определяются только истинностными значениями составляющих высказываний, а не их смыслом.

Широко употребительных логических связок пять.

отрицание (изображается знаком),

конъюнкция (знак ),

дизъюнкция (знак v),

импликация (знак )

эквивалентность (знак ).

Ø Определение Отрицание высказывания P - высказывание, истинное тогда и только тогда, когда высказывание P ложно.

Ø Определение Конъюнкция двух высказываний P и Q - высказывание, истинное тогда и только тогда, когда истинны оба высказывания.

Ø Определение Дизъюнкция двух высказываний P и Q - высказывание, ложное тогда и только тогда, когда оба высказывания ложны.

Ø Определение Импликация двух высказываний P и Q - высказывание, ложное тогда и только тогда, когда P - истинно, а Q - ложно. Высказывание P называется посылкой импликации, а высказывание Q - заключением импликации.

Ø Определение Эквивалентность двух высказываний P и Q - высказывание, истинное тогда и только тогда, когда истинностные значения P и Q совпадают.

Употребление слов «если...» «то...» в алгебре логики отличается от употребления их в обыденной речи, где, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х , то у » вообще не имеет смысла. Кроме того, строя предложение вида «если х , то у » в обыденной речи, всегда подразумеваем, что предложение у вытекает из предложения х . Употребление слов «если, то » в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.

2.4Логические операции

Основой цифровой техники служат три логические операции, лежащие в основе всех выводов компьютера. Это три логические операции: И, ИЛИ, НЕ, которые называют «тремя китами машинной логики».

К высказываниям можно применять известные из курса дискретной математики логические связки или логические операции. При этом получаются формулы . Формулы становятся высказываниями при подстановке всех значений букв.

Таблицы истинности основных логических операций.

Несколько переменных, связанных между собой с помощью логических операций, называют логической функцией.

Описание всякого исчисления включает в себя описание символов этого исчисления (алфавита), формул, являющихся конечными конфигурациями символов, и определение выводимых формул.

2.5 Алфавит исчисления высказываний

Алфавит исчисления высказывания состоит из символов трех категорий:

Первый из них – знак дизъюнкции или логического сложения, второй – знак конъюнкции или логического умножения, третий – знак импликации или логического следования и четвертый – знак отрицания.

Других символов исчисление высказываний не имеет

2.6 Формулы.Тавтология

Формулы исчисления высказываний представляют собой последовательности символов алфавита исчисления высказываний.

Для обозначения формул используются большие буквы латинского алфавита. Эти буквы не являются символами исчисления. Они представляют собой только условные обозначения формул.

Ø Определение Формула– правильно построенная составное высказывание:

1) Всякая буква есть формула .

2) Если , - формулы, то формулами являются также , , , , .

Очевидно, не являются формулами слова: ) (в третьем из этих слов содержится не закрытая скобка, а в четвертом – нет скобок).

Заметим, что здесь никак не конкретизируются понятия логических связок. Обычно в запись формул вводят некоторые упрощения. Например, в записи формул опускаются скобки по тем же правилам, что и в алгебре высказываний.

Ø Определение. Формула называется тавтологией , если она принимает только истинные значения при любых значениях букв.

Ø Определение Формула ложная при любых значениях букв называетсяпротиворечием

Ø Определение Формула называется выполнимой , если на некотором наборе распределения истинностных значений переменных она принимает значение И.

Ø Определение Формула называется опровержимой , если при некотором распределении истинностных значений переменных она принимает значение Л.

Пример являются формулами согласно п.2 определения.

По этой же причине будут формулами слова:

Одновременно с понятием формулы вводится понятие подформулы или части формулы.

1. Подформулой элементарной формулы является она сама.

2. Если формула имеет вид , то ее подформулами являются: она сама, формула А и все подформулы формулы А.

3. Если формула имеет вид (А*В) (здесь и в дальнейшем под символом * будем понимать любой из трех символов ), то ее подформулами являются: она сама, формулы А и В и все подформулы формул А и В.

Пример Для формулы ее подформулами будут:

- подформула нулевой глубины,

Подформулы первой глубины,

Подформулы второй глубины,

Подформулы третьей глубины,

Подформула четвертой глубины.

Таким образом, по мере “погружения вглубь структуры формулы” выделяем подформулы все большей глубины

Из курса дискретной математики известны основные логические эквивалентности (равносильности), которые являются примерами тавтологий. Все логические законы должны быть тавтологиями.

Иногда законы называются правилами вывода, которые определяют правильный вывод из посылок.

2.7Законы логики высказываний

Алгебра логики обладает коммутативными и ассоциативными законами относительно операций конъюнкции и дизъюнкции и дистрибутивным законом конъюнкции относительно дизъюнкции, эти же законы имеют место и в алгебре чисел.

Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел (раскрытие скобок, заключение в скобки, вынесение за скобки общего множителя).

Рассмотрим основные законы логики высказываний.

1. Коммутативность:

, .

2. Ассоциативность:

3. Дистрибутивность:

4. Идемпотентность: , .

5. Закон двойного отрицания: .

6. Закон исключения третьего: .

7. Закон противоречия: .

8. Законы де Моргана:

9. Законы идемпотентности (свойства операций с логическими константами)

В алгебре логики нет показателей степеней и коэффициентов. Конъюнкция одинаковых ”сомножителей” равносильна одному из них

Здесь , и – любые буквы.

Примеры. формула тавтология.





error: Контент защищен !!