Основные виды измерений в метрологии. Основные виды и методы измерений, их классификация

Выделяют следующие основные характеристики измерений:

1) метод, которым проводятся измерения;

2) принцип измерений;

3) погрешность измерений;

4) точность измерений;

5) правильность измерений;

6) достоверность измерений.

Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения.

Существует несколько критериев классификации методов измерений.

1. По способам получения искомого значения измеряемой величины выделяют:

1) прямой метод (осуществляется при помощи прямых, непосредственных измерений);

2) косвенный метод.

2. По приемам измерения выделяют:

1) контактный метод измерения;

2) бесконтактный метод измерения.

Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом.

При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом.

3. По приемам сравнения величины с ее мерой выделяют:

1) метод непосредственной оценки;

2) метод сравнения с ее единицей.

Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины.

Метод сравнения с мерой основан на сравнении объекта измерения с его мерой.

Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение.

Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины.

Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины.

Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность).

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений.

4 Понятие о физической величине Значение систем физических единиц

Физическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на:

1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации;

2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм.

В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин:

1) система СГС (1881 г.);

2) система МКГСС (конец XIX в.);

3) система МКСА (1901 г.)

Измерение является важнейшим понятием в метрологии. Это организованное действие человека, выполняемое для количественного познания свойств физического объекта с помощью определения опытным путем значения какой–либо физической величины.

Существует несколько видов измерений. При их классификации обычно исходят из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

По характеру зависимости измеряемой величины от времени измерения разделяются на:

    статические, при которых измеряемая величина остается постоянной во времени;

    динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

Статическими измерениями являются, например, измерения размеров тела, постоянного давления, динамическими – измерения пульсирующих давлений, вибраций.

По числу измерений они делятся на однократные и многократные. Однократным называют измерение, выполненное один раз. Многократным называют измерение физической величины одного размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений. Многократное измерение выполняют в случае, когда случайная составляющая погрешности однократного измерения может превысить требуемые по условиям задачи значение. Выполнив ряд последовательных отдельных измерений, получают одно многократное измерение, погрешность которого может быть уменьшена методами математической статистики.

По способу получения результатов измерений их разделяют на:

  • косвенные;

    совокупные;

    совместные.

Прямые – это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q – искомое значение измеряемой величины, а X – значение, непосредственно получаемое из опытных данных.

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др. Прямые измерения широко применяются в машиностроении, а также при контроле технологических процессов (измерение давления, температуры).

Косвенные – это измерения, при которых искомую величину определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, т.е. измеряют не собственно определяемую величину, а другие, функционально с ней связанные. Значение измеряемой величины находят путем вычисления по формуле Q = F(x 1 ,x 2 ,…,x n), где Q – искомое значение косвенно измеряемой величины; F – функциональная зависимость, которая заранее известна, x 1 ,x 2 ,…,x n – значения величин, измеренных прямым способом.

Совокупные – это производимые одновременно измерения нескольких одноименных величин, при которых искомую определяют решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Совместные – это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними.

По условиям, определяющим точность результата, измерения делятся на три класса:

    измерения максимально возможной точности, достижимой при существующем уровне техники. К этому же классу относятся и некоторые специальные измерения, требующие высокой точности;

    контрольно–поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения;

    технические измерения, в которых погрешность результата определяется характеристиками средств измерений.

По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называются измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант.

Относительными называются измерения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принимаемой за исходную.

Существуют и другие классификации измерений, например, по связи с объектом (контактные и бесконтактные), по условиям измерений (равноточные и неравноточные).

Основными характеристиками измерений являются: принцип измерений, метод измерений, погрешность, точность, правильность и достоверность.

Принцип измерений – физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

В настоящее время все измерения в соответствии с физическими законами, используемыми при их проведении, сгруппированы в 13 видов измерений. Им в соответствии с классификацией были присвоены двухразрядные коды видов измерений: геометрические (27), механические (28), расхода, вместимости, уровня (29), давления и вакуума (30), физико–химические (31), температурные и теплофизические (32), времени и частоты (33), электрические и магнитные (34), радиоэлектронные (35), виброакустические (36), оптические (37), параметров ионизирующих излучений (38), биомедицинские (39).

Метод измерений – совокупность приемов использования принципов и средств измерений.

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Как правило, метод измерений обусловлен устройством средств измерений. Средствами измерений являются используемые технические средства, имеющие нормированные метрологические свойства. Примерами распространенных методов измерений являются следующие методы:

    метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений. Например, взвешивание на циферблатных весах или измерение давления пружинным манометром;

    дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Этот метод может дать очень точные результаты. Так, если разность составляет 0,1 % измеряемой величины и оценивается прибором с точностью до 1 %, то точность измерения искомой величины составит уже 0,001 %. Например, при сравнении одинаковых линейных мер, где разность между ними определяется окулярным микрометром, позволяющим ее оценить до десятых долей микрона;

    нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Мера – средство измерений, предназначенное для воспроизведения и хранения физической величины. Например, измерение массы на равноплечных весах при помощи гирь. Принадлежит к числу очень точных методов.

    метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока на компенсаторе сравнением с известной ЭДС нормального элемента. Результат измерения при этом методе либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры. Существуют различные модификации этого метода: метод измерения замещением (измеряемую величину замещают мерой с известным значением величины, например, при взвешивании поочередным помещением массы и гирь на одну и ту же чашку весов) и метод измерений дополнением (значение измеряемой меры дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению).

Качество измерений характеризуется точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также размером погрешности.

Погрешность измерений – разность между полученным при измерении и истинным значениями измеряемой величины. Погрешность вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом наблюдателя или особенностями его органов чувств.

Точность измерений – это характеристика измерений, отражающая близость их результатов к истинному значению измеряемой величины. Количественно точность можно выразить величиной, обратной модулю относительной погрешности.

Правильность измерения определяется как качество измерения, отражающее близость к нулю систематических погрешностей результатов (т.е. таких погрешностей, которые остаются постоянными или закономерно изменяются при повторных измерениях одной и той же величины). Правильность измерений зависит, в частности, от того, насколько действительный размер единицы, в которой выполнено измерение, отличается от ее истинного размера (по определению), т.е. от того, в какой степени были правильны (верны) средства измерений, использованные для данного вида измерений.

Важнейшей характеристикой качества измерений является их достоверность . Она характеризует доверие к результатам измерений и делит их на две категории: достоверные и недостоверные, в зависимости от того, известны или неизвестны вероятностные характеристики их отклонений от истинных значений соответствующих величин. Результаты измерений, достоверность которых неизвестна, не представляют ценности и в ряде случаев могут служить источником дезинформации.

Сходимость (повторяемость) – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполненных повторно одними и теми же средствами измерений, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Воспроизводимость – это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполняемых в различных условиях (в различное время, различными средствами и т.д.).

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

В настоящее время существует множество видов измерений, различаемых физическим характером измеряемой величины и факто­рами, определяющими разнообразные условия и режимы измерений. Основными видами измерений физических величин, в том числе и линейно-угловых (ГОСТ 16263–70), являются прямые , косвен­ные , совокупные , совместные , абсолютные и относительные.

Наиболее широко используются прямые измерения , состоящие в том, что искомое значение измеряемой величины находят из опытных данных с помощью средств измерения. Линейный размер можно установить непосредственно по шкалам линейки, рулетки, штангенциркуля, микрометра, действующую силу – динамометром, температуру – термометром и т. д.

Уравнение прямых измерений имеет вид:

где Q – искомое значение измеряемой величины; X – значение измеряемой величины, полученное непосредственно по показа­ниям измерительных средств.

Косвенные – такие измерения, при которых искомую величину определяют по известной зависимости между этой величиной и другими величинами, полученными прямыми измерениями.

Уравнение косвенных измерений имеет вид:

Q = f (х 1 , х 2 , х 3 , ...),

где Q – искомое значение косвенно измеряемой величины; х 1 , х 2 , х 3 , ... – значения величин, измеряемых прямым видом измерений.

Косвенные измерения применяют в тех случаях, когда иско­мую величину невозможно или очень сложно измерить непосред­ственно, т.е. прямым видом измерения, или когда прямой вид из­мерения дает менее точный результат.

Примерами косвенного вида измерения являются установле­ние объема параллелепипеда перемножением трех линейных вели­чин (длины, высоты и ширины), определенных с использованием прямого вида измерений, расчёт мощности двигателя, определе­ние удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения и т. д.



Примером косвенного измерения явля­ется также измерение среднего диаметра наружной крепёжной резьбы методом «трех проволочек». Этот метод основан на наи­более точном определении среднего диа­метра резьбы d 2 как диаметра условного ци­линдра, образующая которого делит про­филь резьбы на равные части Р/2 (рис. 2.1):

где D изм – расстояние, включая диаметры проволочек, полученное прямыми измерениями;

d 2 – диаметр проволочки, обеспечивающий контакт с профилем резьбы в точках, лежащих на образующей d 2 ;

α – угол профиля резьбы;

Р – шаг резьбы.


Совокупные измерения осуществляют одновременным измерением нескольких одноименных величин, при которых искомое значе­ние находят решением системы уравнений, получаемых при пря­мых измерениях различных сочетаний этих величин. Примером совокупных измерений является калибровка гирь набора по извест­ной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь.

Например, необходимо произвести калибровку гарь массой 1; 2; 5; 10 и 20 кг. Образцовой принимается гиря 1 кг, обозначенная 1 об.

Проведем измерения, меняя каждый раз комбинацию гирь:

1 = 1 06 + а ; 1 + l об = 2 + b ; 2 = 2 + с ; 1+2 + 2 = 5 + d и т. д.

Буквы а , b , с , d – неизвестные значения грузиков, которые приходится прибавлять или отнимать от массы гири. Решив систе­му уравнений, можно определить значение каждой гири.

Совместные измерения – одновременные измерения двух или нескольких неодноимённых величин для нахождения зависимости между ними, например измерения объема тела, производимые с измерениями различных температур, обусловливающих изменение объема этого тела.

К числу основных видов измерений, по признаку характера результатов измерения для разнообразных физических величин, относятся абсолютные и относительные измерения.

Абсолютные измерения основаны на прямых измерениях одной или нескольких физических величин. Примером абсолютного из­мерения может служить измерение диаметра или длины валика штангенциркулем или микрометром, а также измерение темпера­туры термометром.

Абсолютные измерения сопровождаются оценкой всей измеря­емой величины.

Относительные измерения основаны на измерении отношения измеряемой величины, играющей роль единицы, или измерении величины по отношению к одноименной величине, принимаемой за исходную. В качестве образцов часто используют образцовые меры в виде плоскопараллельных концевых мер длины.

Примером относительных измерений могут служить измерения калибров пробок и скоб на горизонтальном и вертикальном опти­метрах с настройкой измерительных приборов по образцовым ме­рам. При использовании образцовых мер или образцовых деталей относительные измерения позволяют повысить точность результа­тов измерений по сравнению с абсолютными измерениями.

Помимо рассмотренных видов измерения по основному при­знаку – способу получения результата измерения виды измерений классифицируют также по точности результа­тов измерения – на равноточные и неравноточные , по числу изме­рений – на многократные и однократные , по отношению к изме­нению измеряемой величины во времени – на статические и ди­намические , по наличию контакта измерительной поверхности сред­ства измерения с поверхностью изделия – на контактные и бес­контактные и др.

В зависимости от метрологического назначения измерения де­лят на технические – производственные измерения, контрольно-поверочные и метрологические – измерения с предельно возмож­ной точностью с использованием эталонов с целью воспроизведе­ния единиц физических величин для передачи их размера рабочим средствам измерения.

Методы измерений

В соответствии с РМГ 29–99, к числу основных методов изме­рений относят метод непосредственной оценки и методы сравне­ния: дифференциальный, нулевой, замещения и совпадений.

Непосредственный метод – метод измерений, в котором значе­ние величины определяют непосредственно по отсчетному устрой­ству измерительного прибора прямого действия, например измере­ния вала микрометром и силы – механическим динамометром.

Методы сравнения с мерой – методы, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой:

дифференциальный метод характеризуется измерением разности между измеряемой величиной и известной величиной, воспроиз­водимой мерой. Примером дифференциального метода может слу­жить измерение вольтметром разности двух напряжений, из кото­рых одно известно с большой точностью, а другое представляет собой искомую величину;

нулевой метод – при котором разность между измеряемой ве­личиной и мерой сводится к нулю. При этом нулевой метод имеет то преимущество, что мера может быть во много раз меньше изме­ряемой величины, например взвешивание на весах, когда на од­ном плече находится взвешиваемый груз, а на другом – набор эталонных грузов;

метод замещения – метод сравнения с мерой, в котором изме­ренную величину замещают известной величиной, воспроизводимой мерой. Метод замещения применяется при взвешивании с поочередным помещением измеряемой массы и гирь на одну и ту же чашу весов;

метод совпадений – метод сравнения с мерой, в котором раз­ность между измеряемой величиной и величиной, воспроизводи­мой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Примером использования данного мето­да может служить измерение длины при помощи штангенциркуля с нониусом.

В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод оценки основан на использовании суждений группы специалистов.

Эвристические методы оценки основаны на интуиции.

Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.

Погрешности измерений

Общие положения . Процесс измерения неизбежно сопровожда­ется ошибками, которые вызываются несовершенством измери­тельных средств, нестабильностью условий проведения измерений, несовершенством самого метода и методики измерений, недоста­точным опытом и несовершенством органов чувств человека, вы­полняющего измерения, а также другими факторами.

Погрешностью измерения называется отклонение результата из­мерения от истинного значения измеряемой величины:

ΔХ изи = Х i – Х и,

где X j – i-е значение результата измерения;

Х и – истинное значе­ние измеряемой величины.

Поскольку истинное значение измеряемой величины всегда остается неизвестным, за него при многократных измерениях при­нимается среднее арифметическое значение :

, (2.1)

где n – количество проведенных измерений.

Погрешность измерения (ΔХ изи), выраженная в единицах изме­ряемой величины, называется абсолютной. Она не всегда является информативной. Например, абсолютная погрешность 0,01 мм мо­жет быть достаточно большой при измерениях величин в десятые доли миллиметра и малой при измерениях величин, размеры ко­торых превышают несколько метров.

Более информативной величиной является относительная по­грешность, под которой понимают отношение абсолютной погреш­ности измерения к её истинному значению (или математическому ожиданию), %:

.

Именно относительная погрешность используется для характе­ристики точности измерения.

По своему характеру (закономерностям проявления ) погреш­ности измерения подразделяются на систематические, случайные и грубые промахи.

Систематические погрешности . К систематическим погрешнос­тям относят погрешности, которые при повторных измерениях остаются постоянными или изменяются по какому-либо закону. Систематические погрешности при измерении одним и тем же методом и одними и теми же измерительными средствами всегда имеют постоянные значения. К причинам, вызывающим их появ­ление, относят:

– погрешности метода или теоретические погрешности;

– инструментальные погрешности;

– погрешности, вызванные воздействием окружающей среды и условий измерения.

Погрешности метода происходят вследствие ошибок или недо­статочной разработанности метода измерений. Сюда же можно от­нести неправомерную экстраполяцию свойства, полученного в результате единичного измерения, на весь измеряемый объект. Например, принимая решение о годности вала по единичному измерению, можно допустить ошибку, поскольку не учитываются такие погрешности формы, как отклонения от цилиндричности, круглости, профиля продольного сечения и др. Поэтому для ис­ключения такого рода систематических погрешностей в методике измерений рекомендуется проведение измерений в нескольких местах деталей и взаимно-перпендикулярных направлениях.

К погрешностям метода относят также влияние инструмента на свойства объекта (например, значительное измерительное усилие, изменяющее форму тонкостенной детали) или погрешности, свя­занные с чрезмерно грубым округлением результата измерения.

Инструментальные погрешности связаны с погрешностями средств измерения, вызванными погрешностями изготовления или износом составных частей измерительного средства.

К погрешностям, вызванным воздействием окружающей среды и условий измерений , относят температуру (например, измерения ещё не остывшей детали), вибрации, нежёсткость поверхности, на которую установлено измерительное средство, и т. п.

Одним из методов обнаружения систематической погрешности может быть замена средства измерений на аналогичное в случае, если оно предположительно является источником систематичес­кой погрешности. Подобным образом можно обнаружить система­тическую погрешность, вызванную внешними условиями: напри­мер, замена поверхности, на которую установлено измерительное средство, на более жёсткую.

Появление систематической погрешности можно обнаружить статистически, нанося с заданной периодичностью результаты измерений на бумагу с заданными границами (например, предель­ными размерами). Устойчивое движение результата измерений в сторону одной из границ будет означать появление систематичес­кой погрешности и необходимости вмешательства в технологичес­кий процесс.

Для исключения систематической погрешности в производствен­ных условиях проводят поверку средств измерений, устраняют те причины, которые вызваны воздействиями окружающей среды, а сами измерения проводят в строгом соответствии с рекомендуе­мой методикой, принимая в необходимых случаях меры по ее со­вершенствованию.

Постоянные систематические погрешности не влияют на зна­чения случайных отклонений измерений от средних арифметичес­ких, поэтому их сложно обнаружить статистическими методами. Анализ таких погрешностей возможен только на основании апри­орных знаний о погрешностях, получаемых, в частности, при по­верке средств измерений. Например, при поверке средств измере­ний линейных величин измеряемая величина обычно воспроизво­дится образцовой мерой (концевой мерой длины), действитель­ное значение которой известно. Систематические погрешности приводят к искажению результатов измерений и потому должны выявляться и учитываться при оценке результатов измерений. Пол­ностью систематическую погрешность исключить практически не­возможно; всегда в процессе измерения остается некая малая ве­личина, называемая неисключенной систематической погрешно­стью. Эта величина учитывается путем внесения поправок.

Разность между средним арифметическим значением результа­тов измерения и значением меры с точностью, определяемой по­грешностью при ее аттестации, называется поправкой . Она вносит­ся в паспорт аттестуемого средства измерения и принимается за искомую систематическую погрешность.

Случайные погрешности . Случайные погрешности – это погреш­ности, принимающие при повторных измерениях различные, не­зависимые по знаку и величине значения, не подчиняющиеся ка­кой-либо закономерности. Причин, вызывающих случайные по­грешности, может быть много; например колебание припуска на обработку, механические свойства материалов, посторонние вклю­чения, точность установки деталей на станок, точность средства измерения заготовки, изменение измерительного усилия крепле­ния детали на станке, силы резания и др.

Как правило, индивидуальное влияние каждой из этих причин на результаты измерения невелико и не поддается оценке, тем более, что, как всякое случайное событие, оно в каждом конкрет­ном случае может произойти или нет.

Для случайных погрешностей характерен ряд условий:

– малые по величине случайные погрешности встречаются чаще, чем большие;

– отрицательные и положительные относительно средней величины измерений, равные по величине погрешности, встречаются одинаково часто;

– для каждого метода измерений есть свой предел, за которым погрешности практически не встречаются (в противном случае эта погрешность будет грубой).

Выявление случайных погрешностей особенно необходимо при точных, например, лабораторных измерениях. Для этого исполь­зуют многократные измерения одной и той же величины, а их результаты обрабатываются методами теории вероятностей и ма­тематической статистики. Это позволяет уточнить результаты вы­полненных измерений.

Влияние случайных погрешностей выражается в разбросе полу­ченных результатов относительно математического ожидания, по­этому количественно наличие случайных погрешностей хорошо оценивается среднеквадратическим отклонением (СКО).

Для оценки рассеяния результатов измерений физической ве­личины X i относительно среднего , определяемого по (2.1), СКО определяется по формуле

при n ≥ 20 (2.2)

при n ≤ 20, (2.3)

где n – число измерений.

Поскольку среднее значение серии измерений является слу­чайным приближением к истинному значению измеряемой вели­чины, то для оценки возможных отклонений среднего значения используется опытное СКО – S :

. (2.4)

Величина S применяется при оценке погрешностей оконча­тельного результата.

Случайные погрешности измерения, не изменяя точности ре­зультата измерений, тем не менее, оказывают влияние на его до­стоверность.

При этом дисперсия среднего арифметического ряда измере­ний всегда имеет меньшую погрешность, чем погрешность каждо­го определенного измерения. Из формул (2.2) и (2.3) следует, что если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то количество измере­ний надо увеличить в 4 раза.

Грубые погрешности (промахи) . Грубые погрешности – это погрешности, не характерные для технологического процесса или результата, приводящие к явным искажениям результатов измере­ния. Наиболее часто они допускаются неквалифицированным персоналом при неправильном обращении со средством измерения, неверным отсчетом показаний, ошибками при записи или вслед­ствие внезапно возникшей посторонней причины при реализации технологических процессов обработки деталей. Они сразу видны среди полученных результатов, так как полученные значения от­личаются от остальных значений совокупности измерений.

Если в процессе измерений удается найти причины, вызываю­щие существенные отличия, и после устранения этих причин по­вторные измерения не подтверждают подобных отличий, то такие измерения могут быть исключены из рассмотрения. Но необдуман­ное отбрасывание резко отличающихся от других результатов из­мерений может привести к существенному искажению характери­стик измерений. Иногда при обработке результатов измерений учёт всех обстоятельств, при которых они были получены, не пред­ставляется возможным. В таком случае при оценке грубых погреш­ностей приходится прибегать к обычным методам проверки стати­стических гипотез.

Проверяемая гипотеза состоит в утверждении, что результат измерений X i не содержит грубой погрешности, а является одним из значений случайной величины. Обычно проверяют наибольшее Х m ах и наименьшее X min значения результатов измерений. Для про­верки гипотез используются следующие критерии.

1) Если число измерений n ≤ 10, то может быть использован критерий Шовине . В этом случае грубой ошибкой (промахом) считается результат Х i если разность превышает значе­ния S, определяемые в зависимости от числа измерений:

где σ х – СКО, полученное по формуле (2.3).

2) Критерий Романовского , используемый при числе измерений 10 < n < 20. При этом вычисляют отношение

и полученное значение β сравнивают с теоретическим β т при вы­бираемом уровне значимости q (см. табл. 2.4). Напомним, что уро­вень значимости – это вероятность отвергнуть верную гипотезу при статистической проверке гипотезы. Обычно при обработке результатов измерений её значение принимают в пределах 0,05...0,1. Если β превышает β т то результат Х i считается грубой ошибкой.

Таблица 2.4

Таблица значений β т = f (n)

Уровень значимости q Число измерений n
0,01 1,73 2,16 2,43 2,62 2,75 2,90 3,08
0,02 1,72 2,13 2,37 2,54 2,66 2,80 2,96
0,05 1,71 2,10 2,27 2,41 2,52 2,64 2,78
0,10 1,69 2,00 2,17 2,29 2,39 2,49 2,62

3) Критерий 3S – наиболее распространённый. Он используется, когда количество измерений n ≥ 20…50. В этом случае считается, что результат, полученный с вероятностью Р = 0,003, маловероятен и его можно квалифицировать как промах, т. е. сомнительный результат Х i должен быть исключён из измерений, если

Пример 1 . При измерении отверстия Ø20Н13(+0,33) получены следующие результаты:

Ø20,32; Ø20,18; Ø20,26; Ø20,21; Ø20,28; Ø20,42 мм.

Необходимо проверить является ли размер Ø20,42 мм промахом.

Поскольку n = 6, применяется критерий Шовине:

из уравнения (2.1) найдём

по уравнению (2.3) найдём S

Это означает, что хотя результат и выходит за заданный предельно допустимый размер, его нельзя считать промахом. Поэтому деталь следует забраковать.

Пример 2 . При измерении вала Ø40h12(-0,25) получены следующие результаты: 39,72; 39,75; 39,76; 39,80; 39,81; 39,82; 39,82; 39,83; 39,85; 39,87; 39,88; 39,88; 39,90; 39,91; 39,92; 39,92; 39,93; 39,94; 39,96; 39,98; 39,99 мм.

Поскольку результат 39,72 мм выходит за пределы наименьшего предельного размера и деталь может быть забракована, следует определить, не является ли этот размер промахом.

Так как число измерений превышает 20, можно воспользоваться критерием S. После обработки результатов измерений получаем:

39,91 мм, S =0,12 мм,

тогда 3S = 3·0,12 = 0,36 мм

Следовательно, результат измерения 39,72 мм не может быть признан промахом и деталь должна быть забракована.

По способу получения результата измерения

По способу представления результатов измерений

По характеру изменения во времени измеряемой ФВ

По характеристике точности

По числу измерений

- однократные (измерения выполняют один раз);

- многократные (ряд многократных измерений ФВ одного и того же размера)

- равноточные (ряд измерений какой либо величины, выполненные одинаковыми по точности СИ в одних и тех же условиях и с одинаковой тщательностью);

- неравноточные (ряд измерений какой либо величины, выполненные различающимися по точности СИ и в разных условиях).

- статические;

- динамические .

- абсолютные (измерения величины в её единицах);

- относительные (измерения изменений величины по отношению к одноименной величине, принимаемой за исходную). Относительные измерения при прочих равных условиях могут быть выполнены более точно, чем абсолютные, так как в суммарную погрешность не входит погрешность меры величины.

- прямые (искомое значение ФВ получают непосредственно из опытных данных).

- косвенные – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. При этом числовое значение искомой величины находится расчетным путем. Косвенные измерения в свою очередь делят на совокупные и совместные.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые измерения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Числовые значения искомых величин, как и в случае совокупных измерений, находят из системы уравнений, связывающих значения искомых величин со значением величин, измеренных прямым (или косвенным) способом. Число уравнений должно быть не меньше числа искомых величин.

Измерение – сложный процесс и важными для него являются следующие характеристики: принцип и метод измерений, результат, погрешность, точность, сходимость, воспроизводимость, правильность и достоверность.

Принцип измерений – физическое явление или эффект, положенное в основу измерений.

Метод измерения – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Результат измерения – значение величины, полученное путем ее измерения.

Погрешность результата измерений – отклонение результата измерений от истинного (действительного) значения измеряемой величины.



Точность результата измерений – одна из характеристик качества измерений, отражающая близость к нулю погрешности результата измерений. Высокая точность измерения соответствует малым погрешностям. Количественно точность оценивают обратной величиной модуля относительной погрешности, например, если относительная погрешность составляет 0,01, то точность равна 100.

Сходимость результатов измерений – близость друг к другу результатов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью. Сходимость измерений отражает влияние случайных погрешностей на результат измерения.

Воспроизводимость – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами и средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям (температура, давление, влажность и др.).

Правильность – характеристика качества измерений, отражающая близость к нулю систематических погрешностей в их результатах.

Достоверность – характеристика качества измерений, отражающая доверие к их результатам, которая определяется вероятностью (доверительной) того, что истинное значение измеряемой величины находится в указанных границах (доверительных). Измерения делят на достоверные и недостоверные в зависимости от того, на сколько известны вероятностные характеристики их отклонения от действительного значения измеряемых величин.

Вопрос №5

Значение метрологии для научно-технического прогресса и в развитии экономики страны. Основные задачи и проблемы метрологии.

Как уже было отмечено, в практической жизни человек всюду имеет дело с измерениями. На каждом шагу встречаются и известны с незапамятных времен измерения таких величин, как длина, объем, вес, время и др.

Велико значение измерений в современном обществе. Они служат не только основой научно-технических знаний, но имеют первостепенное значение для учета материальных ресурсов и планирования, для внутренней и внешней торговли, для обеспечения качества продукции, взаимозаменяемости узлов и деталей и совершенствования технологии, для обеспечения безопасности труда и других видов человеческой деятельности.

Метрология имеет большое значение для прогресса естественных и технических наук, так как повышение точности измерений - одно из средств совершенствования путей познания природы человеком, открытий и практического применения точных знаний.

Для обеспечения научно-технического прогресса метрология должна опережать своем развитии другие области науки и техники, ибо для каждой из них точные измерения являются одним из основных путей их совершенствования.

Ускорение научно-технического прогресса находится в прямой связи с интенсивным развитием метрологии и техники точных измерений, необходимых как для развития естественных и точных наук, так и для создания новой технологии и усовершенствования средств технического контроля и управления. Все это ставит перед метрологией ряд важнейших задач.

В области единиц измерений одной из основных задач является унификация их на базе широкого внедрения единой Международной системы единиц (СИ). Эта система обеспечивает единообразие применяемых единиц для всех областей науки и техники. Значительно повышаются требования к высшему звену в средствах измерений - к эталонам. Точность измерений в промышленности во многих случаях приближается к предельно возможной при данном состоянии техники и, следовательно, к точности самих эталонов. На очереди дня стоит все более широкое использование фундаментальных физических констант и атомных постоянных, характеризирующихся высокой стабильностью, в качестве основы новых, более совершенных эталонов.

Для поддержания единства измерений, проводимых в разных местах и в разное время, необходимо обеспечить передачу размера единиц от эталонов рабочим средствам измерений с наименьшей потерей точности. Устройство современных эталонов и способы передачи размера единиц должны обеспечивать выполнение этого требования.

Неотложной задачей является распространение точных измерений на области очень малых и больших значений измеряемых величин (малых и больших масс, глубокого вакуума и сверхвысоких давлений, сверхнизких и сверхвысоких температур, сверхвысоких частот и др.). Необходимость передачи размера единиц измерений приборам, измеряющим исчезающе малые или сверхбольшие значения величин, часто не позволяет ограничиваться одним эталоном и требует создания нескольких независимых специальных эталонов для одной и той же величины.

Большое значение также приобретают вопросы проведения предельно точных измерений в особых нестационарных условиях, при динамических режимах, при больших ускорениях, высоких или очень низких температурах, давлениях, частотах.

Развитие измерительных и измерительно-управляющих систем привело к качественным изменениям самого процесса измерения.. Кроме величин, сравнивают процессы, имеющие многочисленные параметры и характеристики. Метрологическое обеспечение должно быть распространено и на измерительно-управляющие системы.

Важные задачи стоят и в области теории измерений. Развитие математической статистики и теории случайных функций оказывает влияние на вопросы метрологической обработки результатов измерений.

Широкое применение автоматических методов контроля и регулирования требует дополнений к сложившимся метрологическим понятиям и представлениям. Методы и средства измерений, используемые в медицине, строительстве, химической промышленности и других отраслях науки и техники, должны быть усовершенствованы.

Служа научной основой измерительной техники, метрология должна обеспечивать необходимую надежность и правильность получаемой измерительной информации, а также законодательно определять единство измерений в стране, единство методов средств контроля технологических процессов и испытания продукции. Метрология и обобщает практический опыт в этой области, и соответственно направляет развитие измерительной техники.

Метрология органически связана со стандартизацией, и эта связь выражается прежде всего в стандартизации единиц измерений, системы государственных эталонов, средств измерений и методов поверки, в создании стандартных образцов свойств и состава вещества. В свою очередь, стандартизация опирается на метрологию, обеспечивающую правильность и сопоставимость результатов испытаний материалов и изделий, а также заимствует из метрологии методы определения и контроля показателей качества

В тесном взаимодействии метрология и стандартизация являются важными рычагами технического прогресса во всех областях науки и экономики страны.





error: Контент защищен !!