Плоскость в пространстве – необходимые сведения. Способы задания плоскости Три способа задания плоскости

Плоскость – это одна из наиболее важных фигур в планиметрии, поэтому нужно хорошо понимать, что она из себя представляет. В рамках этого материала мы сформулируем само понятие плоскости, покажем, как ее обозначают на письме, и введем необходимые обозначения. Затем мы рассмотрим это понятие в сравнении с точкой, прямой или другой плоскостью и разберем варианты их взаимного расположения. Все определения будут проиллюстрированы графически, а нужные аксиомы сформулированы отдельно. В последнем пункте мы укажем, как правильно задать плоскость в пространстве несколькими способами.

Yandex.RTB R-A-339285-1

Плоскость представляет собой одну из простейших фигур в геометрии наравне с прямой и точкой. Ранее мы уже объясняли, что точка и прямая размещаются на плоскости. Если эту плоскость разместить в трехмерном пространстве, то мы получим точки и прямые в пространстве.

В жизни представление о том, что такое плоскость, нам могут дать такие объекты, как поверхность пола, стола или стены. Но нужно учитывать, что в жизни их размеры ограничены, а здесь понятие плоскости связано с бесконечностью.

Прямые и точки, размещенные в пространстве, мы будем обозначать аналогично размещенным на плоскости – с помощью строчных и прописных латинских букв (B , A , d , q и др.) Если в условиях задачи у нас есть две точки, которые расположены на прямой, то можно выбрать такие обозначения, которые будут соответствовать друг другу, например, прямая D B и точки D и B .

Чтобы обозначить плоскость на письме, традиционно используются маленькие греческие буквы, например, α , γ или π .

Если нам нужно графическое отображение плоскости, то обычно для этого используется замкнутое пространство произвольной формы или параллелограмм.

Плоскость принято рассматривать вместе с прямыми, точками, другими плоскостями. Задачи с этим понятием обычно содержат некоторые варианты их расположения друг относительно друга. Рассмотрим отдельные случаи.

Первый способ взаимного расположения заключается в том, что точка расположена на плоскости, т.е. принадлежит ей. Можно сформулировать аксиому:

Определение 1

В любой плоскости есть точки.

Такой вариант расположения также называется прохождением плоскости через точку. Чтобы обозначить это на письме, используется символ ∈ . Так, если нам нужно записать в буквенном виде, что через точку A проходит некая плоскость π , то мы пишем: A ∈ π .

Если некая плоскость задана в пространстве, то число точек, принадлежащих ей, является бесконечным. А какого минимального количества точек будет достаточно для определения плоскости? Ответом на этот вопрос будет следующая аксиома.

Определение 2

Через три точки, которые не расположены на одной прямой, проходит единственная плоскость.

Зная это правило, можно ввести новое обозначение плоскости. Вместо маленькой греческой буквы мы можем использовать названия точек, лежащих в ней, например, плоскость А В С.

Другой способ взаимного расположения точки и плоскости можно выразить с помощью третьей аксиомы:

Определение 3

Можно выделить как минимум 4 точки, которые не будут находиться в одной плоскости.

Выше мы уже отмечали, что для обозначения плоскости в пространстве будет достаточно трех точек, а четвертая может находиться как в ней, так и вне ее. Если нужно обозначить отсутствие принадлежности точки к заданной плоскости на письме, то используется знак ∉ . Запись вида A ∉ π правильно читается как «точка A не принадлежит плоскости π »

Графически последнюю аксиому можно представить так:

Самый простой вариант – прямая находится в плоскости. Тогда в ней будут расположены как минимум две точки этой прямой. Сформулируем аксиому:

Определение 4

Если хотя бы две точки заданной прямой находятся в некоторой плоскости, это значит, что все точки этой прямой расположены в данной плоскости.

Чтобы записать принадлежность прямой некой плоскости, используем тот же символ, что и для точки. Если мы напишем « a ∈ π », то это будет означать, что у нас есть прямая a , которая расположена в плоскости π . Изобразим это на рисунке:

Второй вариант взаимного расположения – это когда прямая пересекает плоскость. В таком случае у них будет всего одна общая точка – точка пересечения. Для записи такого расположения в буквенном виде используем символ ∩ . Например, выражение a ∩ π = M читается как «прямая a пересекает плоскость π в некоторой точке M ». Если у нас есть точка пересечения, значит, у нас есть и угол, под которым прямая пересекает плоскость.

Графически этот вариант расположения выглядит так:

Если у нас есть две прямые, одна из которых лежит в плоскости, а другая ее пересекает, то они являются перпендикулярными друг другу. На письме это обозначается символом ⊥ . Особенности такой позиции мы рассмотрим в отдельной статье. На рисунке это расположение будет выглядеть следующим образом:

Если мы решаем задачу, в которой есть плоскость, нам необходимо знать, что из себя представляет нормальный вектор плоскости.

Определение 5

Нормальный вектор плоскости – это такой вектор, который лежит на перпендикулярной прямой по отношению к плоскости и не равен при этом нулю.

Примеры нормальных векторов плоскости показаны на рисунке:

Третий случай взаимного расположения прямой и плоскости – это их параллельность. В таком случае ни одной общей точки у них нет. Для указания таких отношений на письме используется символ ∥ . Если у нас есть запись вида a ∥ π , то ее следует читать так: «прямая a является параллельной плоскости ∥ ». Подробнее этот случай мы разберем в статье про параллельные плоскости и прямые.

Если прямая расположена внутри плоскости, то она делит ее на две равные или неравные части (полуплоскости). Тогда такая прямая будет называться границей полуплоскостей.

Любые 2 точки, расположенные в одной полуплоскости, лежат по одной сторону от границы, а две точки, принадлежащие разным полуплоскостям, лежат по разную сторону от границы.

1. Наиболее простой вариант – две плоскости совпадают друг с другом. Тогда они будут иметь минимум три общие точки.

2. Одна плоскость может пересекать другую. При этом образуется прямая. Выведем аксиому:

Определение 6

Если две плоскости пересекаются, то между ними образуется общая прямая, на которой лежат все возможные точки пересечения.

На графике это будет выглядеть так:

В таком случае между плоскостями образуется угол. Если он будет равен 90 градусам, то плоскости будут перпендикулярны друг другу.

3. Две плоскости могут быть параллельными друг другу, то есть не иметь ни одной точки пересечения.

Если у нас есть не две, а три и больше пересекающихся плоскостей, то такую комбинацию принято называть пучком или связкой плоскостей. Подробнее об этом мы напишем в отдельном материале.

В этом пункте мы посмотрим, какие существуют способы задания плоскости в пространстве.

1. Первый способ основан на одной из аксиом: единственная плоскость проходит через 3 точки, не лежащие на одной прямой. Следовательно, мы можем задать плоскость, просто указав три таких точки.

Если у нас есть прямоугольная система координат в трехмерном пространстве, в которой задана плоскость с помощью этого способа, то мы можем составить уравнение этой плоскости (подробнее см, соответствующую статью). Изобразим данный способ на рисунке:

2. Второй способ – задание плоскости с помощью прямой и точки, не лежащей на этой прямой. Это следует из аксиомы о плоскости, проходящей через 3 точки. См. рисунок:

3. Третий способ заключается в задании плоскости, которая проходит через две пересекающиеся прямые (как мы помним, в таком случае тоже есть только одна плоскость.) Проиллюстрируем способ так:

4. Четвертый способ основан на параллельных прямых. Вспомним, какие прямые называются параллельными: они должны лежать в одной плоскости и не иметь ни одной точки пересечения. Получается, что если мы укажем в пространстве две такие прямые, то мы тем самым сможем определить для них ту самую единственную плоскость. Если у нас есть прямоугольная система координат в пространстве, в которой уже задана плоскость этим способом, то мы можем вывести уравнение такой плоскости.

На рисунке этот способ будет выглядеть так:

Если мы вспомним, что такое признак параллельности, то сможем вывести еще один способ задания плоскости:

Определение 7

Если у нас есть две пересекающиеся прямые, которые лежат в некоторой плоскости, которые параллельны двум прямым в другой плоскости, то и сами эти плоскости будут параллельны.

Таким образом, если мы зададим точку, то мы сможем задать плоскость, которая проходит через нее, и ту плоскость, которой она будет параллельна. В таком случае мы тоже можем вывести уравнение плоскости (об этом у нас есть отдельный материал).

Вспомним одну теорему, изученную в рамках курса по геометрии:

Определение 8

Через определенную точку пространства может проходить только одна плоскость, которая будет параллельна заданной прямой.

Это значит, что можно задать плоскость путем указания конкретной точки, через которую она будет проходить, и прямой, которая будет перпендикулярна по отношению к ней. Если плоскость задана этим способом в прямоугольной системе координат, то мы можем составить уравнение плоскости для нее.

Также мы можем указать не прямую, а нормальный вектор плоскости. Тогда можно будет сформулировать общее уравнение.

Мы рассмотрели основные способы, с помощью которых можно задать плоскость в пространстве.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Положение плоскости в пространстве определяется тремя ее точками, не лежащими на одной прямой. Поэтому чтобы задать на эпюре плоскость, достаточно задать три ее точки (рис. 206). Плоскость можно задать точкой и прямой (рис. 207, а), двумя параллельными прямыми (рис. 207, б), двумя пересекающимися прямыми (рис. 207, в), треугольником (рис. 207, г).

Можно задать плоскость следами. Следом плоскости называют прямую, по которой данная плоскость пересекает плоскость проекций. На рис. 208 Pv - фронтальный след плоскости Р, Рн - горизонтальный след плоскости Р, Pw - профильный след плоскости Р.

Различные случаи расположения плоскостей относительно плоскостей проекций

Плоскость общего положения - плоскость, расположенная наклонно ко всем плоскостям проекций (рис. 208). Такая плоскость пересекается с тремя плоскостями проекций по прямым, которые являются следами этой плоскости. Каждая пара следов сходится в точке, которая называется точкой схода следов плоскости и располагается на оси проекций. Плоскость общего положения имеет три точки схода, которые обозначаются Рх, Ру, Рz. В этих точках плоскость пересекает оси координат. Плоские фигуры, лежащие в плоскости общего положения, проецируются проекций с искажением.

Проецирующая плоскость - плоскость, перпендикулярная какой-либо плоскости проекций.

Горизонтально - проецирующая плоскость - плоскость, перпендикулярная горизонтальной плоскости проекций Н (рис. 209).

Фронтально - проецирующая плоскость - плоскость, перпендикулярная фронтальной плоскости проекции (рис. 210).

Профильно-проецирующая плоскость - плоскость, перпендикулярная профильной плоскости проекций (рис. 211).

Проецирующая плоскость проецируется на плоскость проекций, к которой она перпендикулярна, в прямую. Па рис. 209 плоскость Р горизонтально-проецирующая, ΔАВС, лежащий в плоскости Р, проецируется в отрезок прямой линии, который совпадает со следом плоскости Рн. На рис. 210 ΔDEF, принадлежащий фронтально-проецирующей плоскости R, проецируется в отрезок, совпадающий со следом плоскости Rv. На рис. 211 ΔKMN, лежащий в профильно-проецирующей плоскости Q, проецируется на плоскость W в отрезок, совпадающий со следом плоскости Qw. Поэтому проецирующие плоскости часто используются в качестве вспомогательных при различных построениях. Например, чтобы через прямую AB провести горизонтально-проецирующую плоскость (рис. 212), достаточно через горизонтальную проекцию прямой ab провести горизонтальный след этой плоскости, так как все, что в этой плоскости лежит, в том числе и прямая AB, проецируется на ее горизонтальный след. Фронтальный след фронтально-проецирующей плоскости совпадает с фронтальной проекцией прямой a"b" (рис. 213). Следы проецирующих плоскостей на других плоскостях проекций перпендикулярны соответствующим осям проекций (см. рис. 209, 210, 211).

Рис. 212 Рис. 213

Плоскости, перпендикулярные двум плоскостям проекций, параллельны третьей плоскости проекций . Геометрические фигуры, лежащие в этих плоскостях, проецируются без искажения на ту плоскость проекций, которой параллельна данная плоскость (рис. 214, 215; 216). Называются такие плоскости так же, как и плоскость проекций, параллельно которой они расположены: горизонтальная плоскость (рис. 214), фронтальная плоскость (рис. 215), профильная плоскость (рис. 216).

Сейчас мы перечислим основные способы задания конкретной плоскости в пространстве.

Во-первых, плоскость можно задать, зафиксировав три не лежащие на одной прямой точки пространства. Этот способ основан на аксиоме: через любые три точки, не лежащие на одной прямой, проходит единственная плоскость.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость с помощью указания координат трех ее различных точек, не лежащих на одной прямой, то мы можем написать уравнение плоскости, проходящей через три заданные точки.

Два следующих способа задания плоскости являются следствием из предыдущего. Они основаны на следствиях из аксиомы о плоскости, проходящей через три точки:

· через прямую и не лежащую на ней точку проходит плоскость, притом только одна (смотрите также статью уравнение плоскости, проходящей через прямую и точку);

· через две пересекающиеся прямые проходит единственная плоскость (рекомендуем ознакомиться с материалом статьи уравнение плоскости, проходящей через две пересекающиеся прямые).

Четвертый способ задания плоскости в пространстве основан на определении параллельных прямых. Напомним, что две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Таким образом, указав две параллельные прямые в пространстве, мы определим единственную плоскость, в которой эти прямые лежат.

Если в трехмерном пространстве относительно прямоугольной системы координат задана плоскость указанным способом, то мы можем составить уравнение плоскости, проходящей через две параллельные прямые.

Признак параллельности двух плоскостей дает нам еще один способ задания плоскости. Вспомним формулировку этого признака: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны. Следовательно, мы можем задать конкретную плоскость, если укажем точку, через которую она проходит и плоскость, которой она параллельна.

В курсе средней школы на уроках геометрии доказывается следующая теорема: через фиксированную точку пространства проходит единственная плоскость, перпендикулярная к данной прямой. Таким образом, мы можем задать плоскость, если укажем точку, через которую она проходит, и прямую, перпендикулярную к ней.

Если в трехмерном пространстве зафиксирована прямоугольная система координат и задана плоскость указанным способом, то можно составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Вместо прямой, перпендикулярной к плоскости, можно указать один из нормальных векторов этой плоскости. В этом случае есть возможность написать общее уравнение плоскости.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Способы задания плоскости.:

  1. 13. Расстройства мышления: по темпу, строю, целенаправленности. Диагностическое значение симптомов.
  2. Основные направления в исследовании нарушений мышления при шизофрении.
  3. Классификация нарушений мышления в работах Б.В. Зейгарник.
  4. 8. Анализ специфики методов специальной психологии по сравнению с методами других отраслей психологии: использование стандартизированных техник (тестов), использование анкетирования, метода анализа продуктов деятельности.
  5. 14. Методика изучения площади геометрических фигур и формиро­вание навыков её измерения. Ознакомление с единицами измерения площа­ди и их соотношением. Особенности восприятия младшего школьника. Учет закономерностей и принципов воспитания при изучении площади геометри­ческих фигур.

Способы задания плоскости, определяющие однозначно положение плоскости в пространстве (см. рис. 16):

а) три точки, не лежащие на одной прямой;

б) прямая и точка вне прямой;

с) параллельные прямые;

d) пересекающиеся прямые.

е) плоская фигура;

На эпюре плоскость задается проекциями перечисленных геометрических элементов и следами. Эти элементы носят название определителя плоскости (∆).

Плоскость в пространстве может быть задана следами (см. рис. 17). Следом плоскости называют линию пересечения данной плоскости с плоскостью проекций. В системе трех плоскостей проекций плоскость общего положения p (не перпендикулярная и не параллельная плоскостям проекций) может иметь три следа – горизонтальный (р 1 ), фронтальный (р 2 ), профильный (р 3 ); Рх, Ру,Рz - точки схода следов (рис. 17)

3.2. Плоскости частного положения.

К плоскостям частного положения относятся:

    Проецирующие плоскости, т.е. плоскости, перпендикулярные к одной из плоскостей проекций (рис. 18);

    Плоскости уровня – плоскости, параллельные одной из плоскостей проекций (рис. 19).

3.3. Проецирующие плоскости

Особенности проецирующих плоскостей:

1. Одна проекция любого элемента, расположенного в проецирующей плоскости, совпадает с соответствующим следом этой плоскости;

2. На эпюре угол наклона заданной плоскости к плоскости проекций проецируется в истинную величину (рис. 18).

3.4. Плоскости уровня

Особенностью плоскостей уровня является то, что любая плоская фигура, расположенная в такой плоскости, проецируется на параллельную ей плоскость без искажения, т.е. в истинную величину (рис. 19).

Для построения элементов, находящихся в плоскости общего положения, нужно руководствоваться двумя правилами:

    Прямая линия принадлежит плоскости, если она проходит через две точки, лежащие в плоскости или если она проходит через точку, лежащую в плоскости и параллельно другой прямой, расположенной в этой плоскости (рис. 20);

    Точка лежит в плоскости, если она лежит на прямой, расположенной в этой плоскости (рис. 21).

3.6. Главные линии плоскости.

Горизонталь (h ) - прямая лежащая в плоскости и одновременно расположенная параллельно плоскости П 1 (рис 22). Фронталь (f ) - прямая лежащая в плоскости и параллельная плоскости П 2 . Линия наибольшего наклона - это прямая лежащая в плоскости и перпендикулярная или горизонталям или фронталям плоскости. С помощью линии наибольшего наклона определяется угол наклона плоскости к плоскостям проекций. Линия наибольшего наклона расположенная перпендикулярно горизонталям плоскости называется еще линией ската плоскости (ВК рис 22).

С помощью линии ската определяется угол наклона плоскости АВС к горизонтальной плоскости проекций. Для этого необходимо способом прямоугольного треугольника определить ее натуральную величину и угол между натуральной величиной и горизонтальной проекцией будет искомый угол.

3.7. Вопросы для самопроверки.

    Перечислите и изобразите графические способы задания плоскости на комплексном чертеже.

    Что понимают под следом плоскости?

    Какую плоскость называют проецирующей и каковы ее графические признаки на чертеже?

    Дайте графические характеристики плоскостям: горизонтально - проецирующей, фронтально – проецирующей, профильно – проецирующей.

    Какую плоскость называют плоскостью уровня?

    Какую плоскость называют горизонтальной? Фронтальной? Профильной? Изобразите их на чертеже.

    Назовите признаки принадлежности прямой плоскости, точки плоскости.

    Покажите на чертеже, как можно прямую заключить в плоскость.

    Назовите главные линии плоскости.

    Как определить угол наклона плоскости к горизонтальной плоскости проекций?

Всякая геометрическая фигура, погруженная в пространство, состоит из некоторого множества точек пространства. Плоскость как одна из геометрических фигур, представляет собой совокупность множества точек. Из этого определения плоскости можно установить способы задания ее положения в пространстве. Для этого достаточно вспомнить аксиому сочетания – через три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну.

На рис. 21 представлены способы задания положения плоскости в пространстве:

а – тремя точками, не лежащими на одной прямой;

б – прямой и точкой, взятой вне прямой;

в – двумя пересекающимися прямыми;

г – двумя параллельными прямыми.

На комплексном чертеже (рис. 22) плоскость может быть задана:

а – проекциями трех точек, не лежащих на одной прямой;

б – проекциями прямой и точки, взятой вне прямой;

в – проекциями двух пересекающихся прямых;

г – проекциями двух параллельных прямых.

Каждый из представленных на рис. 22 способов задания плоскости на чертеже может быть преобразован из одного в другой. Так, например, проведя через точки А и В (рис. 22, а) прямую, получают задание плоскости, представленное на рис. 22, б. От него можно перейти к способу, представленному на рис. 22, г, если через точку С провести прямую, параллельную прямой АВ. Если точки А, В и С соединить попарно прямыми, то получают треугольник АВС – плоскую фигуру (рис. 23), проекциями которой может быть задана плоскость на чертеже.

При этом всегда следует помнить о том, что плоскость, как геометрическая фигура, безгранична и поэтому нельзя ограничиваться построениями только в пределах площади этого треугольника, так как в общем случае проекции плоскости занимают всю каждую из плоскостей проекций: горизонтальную П I , фронтальную П 2 и профильную П 3 .

Более наглядно плоскость может быть задана при помощи прямых, по которым она пересекает плоскости проекций (рис. 24, а).

Эти прямые называются следами плоскости. В общем случае оба следа должны пересекаться между собой в точке на оси проекций, которую называют «точкой схода следов».

Из всего многообразия положений плоскости относительно заданной системы плоскостей проекций обычно выделяют такие, когда.





error: Контент защищен !!