История космонавтики. Основные даты покорения космоса История развития отечественной космонавтики кратко

Пожалуй, развитие космонавтики берёт своё начало в фантастике: людям всегда хотелось летать — не только в воздухе, но и по бескрайним космическим просторам. Как только люди убедились, что земная ось не способна налететь на небесный купол и пробить его, самые пытливые умы начали задаваться вопросом — а что же там, выше? Именно в литературе можно встретить немало упоминаний всевозможных способов отрыва от Земли: не только природные явления типа урагана, но и вполне конкретные технические средства — воздушные шары, сверхмощные пушки, ковры-самолёты, ракеты и прочие костюмы-суперджеты. Хотя первым более или менее реалистичным описанием лётного средства можно назвать миф об Икаре и Дедале.


Постепенно из полёта подражательного (то есть полёта, основанного на подражании птицам) человечество перешло к полёту, основанному на математике, логике и законах физики. Значительная работа авиаторов в лице братьев Райт, Альберта Сантос-Дюмона, Гленна Хаммонда Кёртиса лишь укрепили веру человека в то, что полёт возможен, и рано или поздно холодные мерцающие точки на небе станут ближе, и вот тогда…


Первые упоминания о космонавтике как о науке начались в 30-х годах двадцатого века. Сам термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику». На родине, в Польше, его трудами научное сообщество не заинтересовалось, зато интерес проявили в России, куда автор и переехал впоследствии. Позже появились другие теоретические работы и даже первые эксперименты. Как наука космонавтика сформировалась лишь в середине 20 века. И кто бы что ни говорил, а дорогу в космос открыла наша Родина.

Основоположником космонавтики считается Константин Эдуардович Циолковский. Когда-то он говорил: «Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет ». Позже, в1883 году, он высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. Но было бы неверно не упомянуть такого человека, как Николай Иванович Кибальчич, который выдвинул саму идею возможности построения ракетного летательного аппарата.


В 1903 году Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», где он приходит к выводу, что ракеты на жидком топливе могут вывести человека в космос. Расчёты Циолковского показали, что полёты в космос — дело ближайшего будущего.

Чуть позже к работам Циолковского добавились труды зарубежных ракетостроителей: в начале 20-х годов немецкий учёный Герман Оберт также изложил принципы межпланетного полёта. В середине 20-х американец Роберт Годдард начал разрабатывать и построил успешный прототип жидкостного ракетного двигателя.


Труды Циолковского, Оберта и Годдарда стали своеобразным фундаментом, на котором выросло ракетостроение и, позднее, вся космонавтика. Основная научно-исследовательская деятельность велась в трёх странах: в Германии, США и СССР. В Советском Союзе исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). На их базе в 30-х годах был создан Реактивный институт (РНИИ).

В Германии работали такие специалисты, как Йоханнес Винклер и Вернер фон Браун. Их исследования в области реактивных двигателей дали мощный толчок ракетостроению после второй мировой войны. Винклер долго не прожил, а фон Браун переехал в США и долгое время был самым настоящим отцом космической программы Соединённых Штатов.

В России же дело Циолковского продолжил другой великий русский учёный, Сергей Павлович Королёв.


Именно он создал группу изучения реактивного движения и именно в ней создали и успешно запустили первые отечественные ракеты — ГИРД 9 и 10.


О технологиях, людях, ракетах, развитии двигателей и материалов, решённых проблемах и проделанном пути можно написать столько, что статья получится длиннее расстояния от Земли до Марса, так что опустим часть подробностей и перейдём к самой интересной части — практической космонавтике.

4 октября 1957 года человечество совершило первый успешный запуск космического спутника. Впервые творение рук человеческих проникло за пределы земной атмосферы. В этот день весь мир был поражён успехами советской науки и техники.


Что было доступно человечеству в 1957 году из вычислительной техники? Ну, стоит отметить, что в 1950-х в СССР были созданы первые вычислительные машины, а только в 1957 году в США появился первый компьютер на базе транзисторов (а не радиоламп). Ни о каких гига-, мега- и даже килофлопсах речи не шло. Типичный компьютер того времени занимал пару комнат и выдавал «лишь» пару тысяч операций в секунду (ЭВМ Стрела).

Прогресс космической отрасли был колоссален. Всего за несколько лет точность систем управления ракет-носителей и космических аппаратов выросла настолько, что из погрешности в 20-30 км при выводе на орбиту в 1958 году человек сделал шаг в посадку аппарата на Луне в пятикилометровый радиус к середине 60-х.

Дальше — больше: в 1965 году стало возможным передать на Землю фотографии с Марса (а это расстояние в более чем 200 000 000 километров), а уже в 1980 году — с Сатурна (расстояние — 1 500 000 000 километров!). Говоря о Земле — сейчас совокупность технологий позволяет получать актуальную, достоверную и детальную информацию о природных ресурсах и состоянии окружающей среды

Вместе с освоением космоса шло развитие всех «попутных направлений» — космической связи, телевещания, ретрансляции, навигации и так далее. Спутниковые системы связи стали охватывать практически весь мир, делая возможной двустороннюю оперативную связь с любыми абонентами. Сейчас спутниковый навигатор есть в любой машине (даже в игрушечной), а ведь тогда существование подобного казалось чем-то невероятным.

Во второй половине 20 века началась эра пилотируемых полётов. В 1960-1970-х годах советские космонавты продемонстрировали способность человека работать вне космического корабля, а с 1980-1990-х гг люди стали жить и работать в условиях невесомости чуть ли не годами. Понятное дело, что каждое такое путешествие сопровождалось множеством всевозможных экспериментов — технических, астрономических и так далее.


Огромный вклад в развитие передовых технологий внесли проектирование, создание и использование сложных космических систем. Автоматические космические аппараты, отправляемые в космос (в том числе к другим планетам), по сути дела, являются роботами, которыми управляют с Земли с помощью радиокоманд. Необходимость создания надёжных систем для решения подобных задач привела к более полному пониманию проблемы анализа и синтеза сложных технических систем. Сейчас такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности.


Взять, к примеру, погоду — привычное дело, в мобильных аппсторах для её вывода существуют десятки и даже сотни приложений. Но где с завидной периодичностью брать снимки облачного покрова Земли, не с самой Земли же? ;) Вот-вот. Сейчас же почти все страны мира для информации о погоде используют космические метеоданные.

Не так фантастически, как 30-40 лет назад звучат слова «космическая кузница». В условиях невесомости можно организовать такое производство, какое просто неосуществимо (или не выгодно) разворачивать в условиях земной гравитации. Например, состояние невесомости можно использовать для получения сверхтонких кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов.



Картинки из моей статьи о производстве процессоров

В отсутствие гравитации свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Интересные посты с Хабра: habrahabr.ru/post/170865/ + habrahabr.ru/post/188286/

На данный момент во всём мире существует (точнее, функционирует) более десятка космодромов с уникальными наземными автоматизированными комплексами, а также испытательными станциями и всевозможными сложными средствами подготовки к пуску космических аппаратов и ракетоносителей. В России известными на весь мир являются космодромы «Байконур» и «Плесецк», ну и, пожалуй, «Свободный», с которого периодически осуществляются экспериментальные запуски.


В общем… уже сейчас в космосе делается столько всего — иной раз что-нибудь расскажут, не поверишь:)

ПОНАЕХАЛИ!

Москва, метро ВДНХ — с какой стороны ни посмотри, а памятник «Покорителям космоса» нельзя не заметить.


Но не многие знают, что в цокольной части 110-метрового монумента находится интереснейший музей космонавтики, в котором можно во всех подробностях узнать об истории науки: там вам и «Белка» со «Стрелкой», и Гагарин с Терешковой, и скафандры космонавтов с луноходами…

В музее находится (выполненный в миниатюре) Центр управления полётами, где можно наблюдать Международную космическую станцию в реальном времени и осуществлять переговоры с экипажем. Интерактивная кабина «Буран» с системой подвижности и панорамным стереоизображением. Интерактивный познавательный и обучающий класс, выполненный в виде кают. В специальных зонах размещены интерактивные экспонаты, которые включают в себя тренажёры, идентичные тренажёрам в Центре подготовки космонавтов имени Ю. А. Гагарина: тренажёр транспортного космического корабля сближения и стыковки, виртуальный тренажёр международной космической станции, тренажёр пилота поискового вертолета. Ну и, конечно же, куда без всяких кино- и фотоматериалов, архивных документов, личных вещей деятелей ракетно-космической отрасли, предметов нумизматики, филателии, филокартии и фалеристики, произведений изобразительного и декоративно-прикладного искусства…

Суровая реальность

Во время написания этой статьи было приятно освежить в памяти историю, но сейчас всё как-то не так оптимистично, что ли — совсем недавно мы были супербизонами и лидерами космического пространства, а сейчас даже спутник вывести на орбиту не можем… Тем не менее, мы живём в очень интересное время — если раньше малейшие технические продвижения шли годами и десятилетиями, то сейчас технологии развиваются значительно стремительней. Взять тот же интернет — ещё не забыты те времена, когда еле-еле открывались WAP-сайты на двухцветных дисплейчиках телефонов, а сейчас мы можем откуда угодно делать на телефоне (в котором и пикселей-то не видно) что угодно. ЧТО УГОДНО. Пожалуй, лучшим завершением данной статьи будет известное выступление американского комика Louis C. K, «Всё превосходно, но все недовольны»:

    История пилотируемых космических полетов - Начальный этап освоения космического пространства (полеты на кораблях «Восток» и «Восход») включал в себя вопросы конструирования космических кораблей и их систем, отрабатывались наземные системы управления полетами,… … Энциклопедия ньюсмейкеров

    - (хроника событий и фактов) 1475 Леонардо да Винчи дал эскизы и описание геликоптера, парашюта и орнитоптера. 1670 Опубликован труд Ф. Лана, содержащий проект воздушного судна на аэростатическом принципе с шарообразными ёмкостями, из которых… … Энциклопедия техники

    История космических шаттлов США - Спейс шаттл (Space Shuttle космический челнок) многоразовый пилотируемый транспортный космический корабль США, предназначенный для доставки людей и грузов на низкие околоземные орбиты и обратно. Шаттлы использовались в рамках осуществляемой… … Энциклопедия ньюсмейкеров

    Большой герб Берлина. 1839 История Берлина берёт своё начало задолго до первого документального упоминания, ещё в доисторический период берлинского региона. Свидетельства этого древнего … Википедия

    Город Королёв (бывш. город Калининград) город в России, один из крупн … Википедия

    Юношеский клуб космонавтики им. Г. С. Титова Санкт Петербургского Дворца творчества юных. Существует с 15 октября 1961 года, носит имя второго советского космонавта Германа Степановича Титова. Образовательная программа Комплексная… … Википедия

    Федерация космонавтики России российская общественная организация в области космической деятельности. В состав её членов входит более 300 предприятий и организаций ракетно космической отрасли России. Федерация космонавтики России является… … Википедия

    Межрегиональная общественная организация «Российская академия космонавтики имени К. Э. Циолковского» негосударственная научно общественная организация Российской Федерации в области космонавтики. Основана 28 марта 1991 г. В… … Википедия

    - «Новости космонавтики» … Википедия

    Знак «За международное сотрудничество в области космонавтики» ведомственная награда Федерального космического агентства. Награждение производится приказом Федерального космического агентства. Вручение Знака «За международное сотрудничество… … Википедия

Книги

  • История завоевания космоса , Тим Фернисс , Люди всегда стремились к звездам, но лишь в XX веке эта мечта осуществилась. Усилия гениальных ученых и конструкторов Константина Циолковского, Роберта Годдарда, Сергея Королева, Вернера фон… Категория: Наука. История науки Издатель: Эксмо ,
  • История военной космонавтики , Славин Святослав Николаевич , Книга посвящена истории развития отечественной и зарубежной военной космонавтики. Автор в популярной форме рассказывает о малоизвестных сторонах освоения космоса. Читатель узнает о первых… Категория:

Пожалуй, развитие космонавтики берёт своё начало в фантастике: людям всегда хотелось летать — не только в воздухе, но и по бескрайним космическим просторам. Как только люди убедились, что земная ось не способна налететь на небесный купол и пробить его, самые пытливые умы начали задаваться вопросом — а что же там, выше? Именно в литературе можно встретить немало упоминаний всевозможных способов отрыва от Земли: не только природные явления типа урагана, но и вполне конкретные технические средства — воздушные шары, сверхмощные пушки, ковры-самолёты, ракеты и прочие костюмы-суперджеты. Хотя первым более или менее реалистичным описанием лётного средства можно назвать миф об Икаре и Дедале.


Постепенно из полёта подражательного (то есть полёта, основанного на подражании птицам) человечество перешло к полёту, основанному на математике, логике и законах физики. Значительная работа авиаторов в лице братьев Райт, Альберта Сантос-Дюмона, Гленна Хаммонда Кёртиса лишь укрепили веру человека в то, что полёт возможен, и рано или поздно холодные мерцающие точки на небе станут ближе, и вот тогда…

Первые упоминания о космонавтике как о науке начались в 30-х годах двадцатого века. Сам термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику». На родине, в Польше, его трудами научное сообщество не заинтересовалось, зато интерес проявили в России, куда автор и переехал впоследствии. Позже появились другие теоретические работы и даже первые эксперименты. Как наука космонавтика сформировалась лишь в середине 20 века. И кто бы что ни говорил, а дорогу в космос открыла наша Родина.

Основоположником космонавтики считается Константин Эдуардович Циолковский. Когда-то он говорил: «Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет ». Позже, в1883 году, он высказал мысль о возможности использования реактивного движения для создания межпланетных летательных аппаратов. Но было бы неверно не упомянуть такого человека, как Николай Иванович Кибальчич, который выдвинул саму идею возможности построения ракетного летательного аппарата.

В 1903 году Циолковский публикует научную работу «Исследование мировых пространств реактивными приборами», где он приходит к выводу, что ракеты на жидком топливе могут вывести человека в космос. Расчёты Циолковского показали, что полёты в космос — дело ближайшего будущего.

Чуть позже к работам Циолковского добавились труды зарубежных ракетостроителей: в начале 20-х годов немецкий учёный Герман Оберт также изложил принципы межпланетного полёта. В середине 20-х американец Роберт Годдард начал разрабатывать и построил успешный прототип жидкостного ракетного двигателя.

Труды Циолковского, Оберта и Годдарда стали своеобразным фундаментом, на котором выросло ракетостроение и, позднее, вся космонавтика. Основная научно-исследовательская деятельность велась в трёх странах: в Германии, США и СССР. В Советском Союзе исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). На их базе в 30-х годах был создан Реактивный институт (РНИИ).

В Германии работали такие специалисты, как Йоханнес Винклер и Вернер фон Браун. Их исследования в области реактивных двигателей дали мощный толчок ракетостроению после второй мировой войны. Винклер долго не прожил, а фон Браун переехал в США и долгое время был самым настоящим отцом космической программы Соединённых Штатов.

В России же дело Циолковского продолжил другой великий русский учёный, Сергей Павлович Королёв.

Именно он создал группу изучения реактивного движения и именно в ней создали и успешно запустили первые отечественные ракеты — ГИРД 9 и 10.

О технологиях, людях, ракетах, развитии двигателей и материалов, решённых проблемах и проделанном пути можно написать столько, что статья получится длиннее расстояния от Земли до Марса, так что опустим часть подробностей и перейдём к самой интересной части — практической космонавтике.

4 октября 1957 года человечество совершило первый успешный запуск космического спутника. Впервые творение рук человеческих проникло за пределы земной атмосферы. В этот день весь мир был поражён успехами советской науки и техники.

Что было доступно человечеству в 1957 году из вычислительной техники? Ну, стоит отметить, что в 1950-х в СССР были созданы первые вычислительные машины, а только в 1957 году в США появился первый компьютер на базе транзисторов (а не радиоламп). Ни о каких гига-, мега- и даже килофлопсах речи не шло. Типичный компьютер того времени занимал пару комнат и выдавал «лишь» пару тысяч операций в секунду (ЭВМ Стрела).

Прогресс космической отрасли был колоссален. Всего за несколько лет точность систем управления ракет-носителей и космических аппаратов выросла настолько, что из погрешности в 20-30 км при выводе на орбиту в 1958 году человек сделал шаг в посадку аппарата на Луне в пятикилометровый радиус к середине 60-х.

Дальше — больше: в 1965 году стало возможным передать на Землю фотографии с Марса (а это расстояние в более чем 200 000 000 километров), а уже в 1980 году — с Сатурна (расстояние — 1 500 000 000 километров!). Говоря о Земле — сейчас совокупность технологий позволяет получать актуальную, достоверную и детальную информацию о природных ресурсах и состоянии окружающей среды

Вместе с освоением космоса шло развитие всех «попутных направлений» — космической связи, телевещания, ретрансляции, навигации и так далее. Спутниковые системы связи стали охватывать практически весь мир, делая возможной двустороннюю оперативную связь с любыми абонентами. Сейчас спутниковый навигатор есть в любой машине (даже в игрушечной), а ведь тогда существование подобного казалось чем-то невероятным.

Во второй половине 20 века началась эра пилотируемых полётов. В 1960-1970-х годах советские космонавты продемонстрировали способность человека работать вне космического корабля, а с 1980-1990-х гг люди стали жить и работать в условиях невесомости чуть ли не годами. Понятное дело, что каждое такое путешествие сопровождалось множеством всевозможных экспериментов — технических, астрономических и так далее.

Огромный вклад в развитие передовых технологий внесли проектирование, создание и использование сложных космических систем. Автоматические космические аппараты, отправляемые в космос (в том числе к другим планетам), по сути дела, являются роботами, которыми управляют с Земли с помощью радиокоманд. Необходимость создания надёжных систем для решения подобных задач привела к более полному пониманию проблемы анализа и синтеза сложных технических систем. Сейчас такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности.

Взять, к примеру, погоду — привычное дело, в мобильных аппсторах для её вывода существуют десятки и даже сотни приложений. Но где с завидной периодичностью брать снимки облачного покрова Земли, не с самой Земли же? ;) Вот-вот. Сейчас же почти все страны мира для информации о погоде используют космические метеоданные.Не так фантастически, как 30-40 лет назад звучат слова «космическая кузница». В условиях невесомости можно организовать такое производство, какое просто неосуществимо (или не выгодно) разворачивать в условиях земной гравитации. Например, состояние невесомости можно использовать для получения сверхтонких кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов.


Картинки из моей статьи о производстве процессоров

В отсутствие гравитации свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Интересные посты с Хабра: habrahabr.ru/post/170865 + habrahabr.ru/post/188286
На данный момент во всём мире существует (точнее, функционирует) более десятка космодромов с уникальными наземными автоматизированными комплексами, а также испытательными станциями и всевозможными сложными средствами подготовки к пуску космических аппаратов и ракетоносителей. В России известными на весь мир являются космодромы «Байконур» и «Плесецк», ну и, пожалуй, «Свободный», с которого периодически осуществляются экспериментальные запуски.

В общем… уже сейчас в космосе делается столько всего — иной раз что-нибудь расскажут, не поверишь:)

ПОНАЕХАЛИ!

Москва, метро ВДНХ — с какой стороны ни посмотри, а памятник «Покорителям космоса» нельзя не заметить.

Но не многие знают, что в цокольной части 110-метрового монумента находится интереснейший музей космонавтики, в котором можно во всех подробностях узнать об истории науки: там вам и «Белка» со «Стрелкой», и Гагарин с Терешковой, и скафандры космонавтов с луноходами…

В музее находится (выполненный в миниатюре) Центр управления полётами, где можно наблюдать Международную космическую станцию в реальном времени и осуществлять переговоры с экипажем. Интерактивная кабина «Буран» с системой подвижности и панорамным стереоизображением. Интерактивный познавательный и обучающий класс, выполненный в виде кают. В специальных зонах размещены интерактивные экспонаты, которые включают в себя тренажёры, идентичные тренажёрам в Центре подготовки космонавтов имени Ю. А. Гагарина: тренажёр транспортного космического корабля сближения и стыковки, виртуальный тренажёр международной космической станции, тренажёр пилота поискового вертолета. Ну и, конечно же, куда без всяких кино- и фотоматериалов, архивных документов, личных вещей деятелей ракетно-космической отрасли, предметов нумизматики, филателии, филокартии и фалеристики, произведений изобразительного и декоративно-прикладного искусства…

Суровая реальность

Во время написания этой статьи было приятно освежить в памяти историю, но сейчас всё как-то не так оптимистично, что ли — совсем недавно мы были супербизонами и лидерами космического пространства, а сейчас даже спутник вывести на орбиту не можем… Тем не менее, мы живём в очень интересное время — если раньше малейшие технические продвижения шли годами и десятилетиями, то сейчас технологии развиваются значительно стремительней. Взять тот же интернет — ещё не забыты те времена, когда еле-еле открывались WAP-сайты на двухцветных дисплейчиках телефонов, а сейчас мы можем откуда угодно делать на телефоне (в котором и пикселей-то не видно) что угодно. ЧТО УГОДНО. Пожалуй, лучшим завершением данной статьи будет известное выступление американского комика Louis C. K, «Всё превосходно, но все недовольны»:

Космонавтика как наука, а затем и как практическая отрасль, сформировалась в середине XX века. Но этому предшествовала увлекательная история рождения и развития идеи полета в космос, начало которой положила фантазия, и только затем появились первые теоретические работы и эксперименты. Так, первоначально в мечтах человека полет в космические просторы осуществлялся с помощью сказочных средств или сил природы (смерчей, ураганов). Ближе к XX веку для этих целей в описаниях фантастов уже присутствовали технические средства - воздушные шары, сверхмощные пушки и, наконец, ракетные двигатели и собственно ракеты. Не одно поколение молодых романтиков выросло на произведениях Ж. Верна, Г. Уэллса, А. Толстого, А. Казанцева, основой которых было описание космических путешествий.

Все изложенное фантастами будоражило умы ученых. Так, К.Э. Циолковский говорил: "Сначала неизбежно идут: мысль, фантазия, сказка, а за ними шествует точный расчет". Публикация в начале XX века теоретических работ пионеров космонавтики К.Э. Циолковского, Ф.А. Цандера, Ю.В. Кондратюка, Р.Х. Годдарда, Г. Гансвиндта, Р. Эно-Пельтри, Г. Оберта, В. Гомана в какой-то мере ограничивала полет фантазии, но в то же время вызвала к жизни новые направления в науке - появились попытки определить,что может дать космонавтика обществу и как она на него влияет.

Надо сказать,что идея соединить космическое и земное направления человеческой деятельности принадлежит основателю теоретической космонавтики К.Э. Циолковскому. Когда ученый говорил: "Планета есть колыбель разума, но нельзя вечно жить в колыбели", он не выдвигал альтернативы - либо Земля, либо космос. Циолковский никогда не считал выход в космос следствием какой-то безысходности жизни на Земле. Напротив, он говорил о рациональном преобразовании природы нашей планеты силой разума. Люди, утверждал ученый, "изменят поверхность Земли, ее океаны, атмосферу, растения и самих себя. Будут управлять климатом и будут распоряжаться в пределах Солнечной системы, как на самой Земле, которая еще неопределенно долгое время будет оставаться жилищем человечества".

В СССР начало практических работ по космическим программам связано с именами С.П. Королева и М.К. Тихонравова. В начале 1945 г. М.К. Тихонравов организовал группу специалистов РНИИ по разработке проекта пилотируемого высотного ракетного аппарата (кабины с двумя космонавтами) для исследова-ния верхних слоев атмосферы. В группу вошли Н.Г. Чернышев, П.И. Иванов, В.Н. Галковский, Г.М. Москаленко и др. Проект было решено создавать на базе одноступенчатой жидкостной ракеты, рассчитанной для вертикального полета на высоту до 200 км.

Этот проект (он получил название ВР-190) предусматривал решение следующих задач:

  • исследование условий невесомости в кратковременном свободном полете человека в герметичной кабине;
  • изучение движения центра масс кабины и ее движения около центра масс после отделения от ракеты-носителя;
  • получение данных о верхних слоях атмосферы; проверка работоспособности систем (разделения, спуска, стабилизации, приземления и др.),входящих в конструкцию высотной кабины.

В проекте ВР-190 впервые были предложены следующие решения, нашедшие применение в современных КА:

  • парашютная система спуска, тормозной ракетный двигатель мягкой посадки, система разделения с применением пироболтов;
  • электроконтактная штанга для упредительного зажигания двигателя мягкой посадки, бескатапультная герметичная кабина с системой обеспечения жизнедеятельности;
  • система стабилизации кабины за пределами плотных слоев атмосферы с применением сопел малой тяги.

В целом проект ВР-190 представлял собой комплекс новых технических решений и концепций, подтвержденных теперь ходом развития отечественной и зарубежной ракетно-космической техники. В 1946 г. материалы проекта ВР-190 были доложены М.К. Ти-хонравовым И.В. Сталину. С 1947 г. Тихонравов со своей группой работает над идеей ракетного пакета и в конце 1940-х - начале 1950-х гг. показывает возможность получения первой космической скорости и запуска искусственного спутника Земли (ИСЗ) при помощи разрабатывавшейся в то время в стране ракетной базы. В 1950-1953 гг. усилия сотрудников группы М.К. Тихонравова были направлены на изучение проблем создания составных ракет-носителей и искусственных спутников.

В докладе Правительству в 1954 г. о возможности разработки ИСЗ С.П. Королев писал: "По вашему указанию представляю докладную записку тов. Тихонравова М.К. "Об искусственном спутнике Земли...". В отчете о научной деятельности за 1954 г. С.П. Королев отмечал: "Мы полагали бы возможным провести эскизную разработку проекта самого ИСЗ с учетом ведущихся работ (особенно заслуживают внимания работы М.К. Тихонравова...)".

Развернулись работы по подготовке запуска первого ИСЗ ПС-1. Был создан первый Совет главных конструкторов во главе с С.П. Ко-ролевым, который в дальнейшем и осуществлял руководство кос-мической программой СССР, ставшего мировым лидером в освое-нии космоса. Созданное под руководством С.П. Королева ОКБ-1 -ЦКБЭМ - НПО "Энергия" стало с начала 1950-х гг. центром косми-ческой науки и промышленности в СССР.

Космонавтика уникальна тем, что многое предсказанное сначала фантастами, а затем учеными свершилось воистину с космической скоростью. Всего сорок с небольшим лет прошло со дня запуска пер-вого искусственного спутника Земли, 4 октября 1957 г., а история космонавтики уже содержит серии замечательных достижений, полученных первоначально СССР и США, а затем и другими кос-мическими державами.

Уже многие тысячи спутников летают на орбитах вокруг Земли, аппараты достигли поверхности Луны, Венеры, Марса; научная аппаратура посылалась к Юпитеру, Меркурию, Сатурну для получения знаний об этих удаленных планетах Солнечной системы.

Триумфом космонавтики стал запуск 12 апреля 1961 г. первого человека в космос - Ю.А. Гагарина. Затем - групповой полет, выход человека в космос, создание орбитальных станций "Салют", "Мир"... СССР на долгое время стал ведущей страной в мире по пи-лотируемым программам.

Показательной является тенденция перехода от запуска одиночных КА для решения в первую очередь военных задач к созданию крупномасштабных космических систем в интересах решения широкого спектра задач (в том числе социально-экономических и научных) и к интеграции космических отраслей различных стран.

Чего же достигла космическая наука в XX веке? Для сообщения ракетам-носителям космических скоростей разработаны мощные жидкостные ракетные двигатели. В этой области особенно велика заслуга В.П. Глушко. Создание таких двигателей стало возможным благодаря реализации новых научных идей и схем, практически исключающих потери на привод турбонасосных агрегатов. Разработка ракет-носителей и жидкостных ракетных двигателей способствовала развитию термо-, гидро- и газодинамики, теории теплопередачи и прочности, металлургии высокопрочных и жаростойких материалов, химии топлив, измерительной техники, вакуумной и плазменной технологии. Дальнейшее развитие получили твердотопливные и другие типы ракетных двигателей.

В начале 1950-х гг. советские ученые М.В. Келдыш, В.А. Котельников, А.Ю. Ишлинский, Л.И. Седов, Б.В. Раушенбах и др. разработали математические закономерности и навигационно-баллистическое обеспечение космических полетов.

Задачи, которые возникали при подготовке и реализации космических полетов, послужили толчком для интенсивного развития и таких общенаучных дисциплин, как небесная и теоретическая механика. Широкое использование новых математических методов и создание совершенных вычислительных машин позволило решать самые сложные задачи проектирования орбит космических аппаратов и управления ими в процессе полета, и в результате возникла новая научная дисциплина - динамика космического полета.

Конструкторские бюро, возглавлявшиеся Н.А. Пилюгиным и В.И. Кузнецовым, создали уникальные системы управления ракетно-космической техникой,обладающие высокой надежностью.

В это же время В.П. Глушко, A.M. Исаев создали передовую в мире школу практического ракетного двигателестроения. А теоретические основы этой школы были заложены еще в 1930-е гг.,на заре отечественного ракетостроения. И сейчас передовые позиции России в этой области сохраняются.

Благодаря напряженному творческому труду конструкторских бюро под руководством В.М. Мясищева, В.Н. Челомея, Д.А. Полухина были выполнены работы по созданию крупногабаритных особо прочных оболочек. Это стало основой создания мощных межконтинентальных ракет УР-200, УР-500, УР-700,а затем и пилотируемых станций "Салют", "Алмаз", "Мир", моду лей двадцатитонно-го класса "Квант", "Кристалл", "Природа", "Спектр", современных модулей для Международной космической станции (МКС) "Заря" и "Звезда", ракет-носителей семейства "Протон". Творческое со-трудничество конструкторов этих конструкторских бюро и машиностроительного завода им. М.В. Хруничева позволило к началу XXI века создать семейство носителей "Ангара", комплекс малых космических аппаратов и изготовить модули МКС. Объединение КБ и завода и реструктуризация этих подразделений дали возможность создать крупнейшую в России корпорацию - Государственный космический научно-производственный центр им. М.В. Хруничева.

Большая работа по созданию ракет-носителей на базе баллистических ракет была выполнена в КБ "Южное", возглавлявшимся М.К. Янгелем. Надежность этих ракет-носителей легкого класса не знает аналогов в мировой космонавтике. В этом же КБ под руководством В.Ф. Уткина была создана ракета-носитель среднего класса "Зенит" - представитель второго поколения ракет-носителей.

За четыре десятилетия существенно возросли возможности сис-тем управления ракет-носителей и космических аппаратов. Если в 1957-1958 гг. при выведении искусственных спутников на орбиту вокруг Земли доспускалась ошибка в несколько десятков километров, то к середине 1960-х гг. точность систем управления была уже столь высока, что позволила космическому аппарату, запущенному на Луну, совершить посадку на ее поверхности с отклонением от намеченной точки всего на 5 км. Системы управления конструкции Н.А. Пилюгина были одними из лучших в мире.

Большие достижения космонавтики в области космической связи, телевещания, ретрансляции и навигации, переход к высокоскоростным линиям позволили уже в 1965 г. передать на Землю фотографии планеты Марс с расстояния, превышающего 200 млн км, а в 1980 г. изображение Сатурна было передано на Землю с расстояния около 1,5 млрд км. Научно-производственное объединение прикладной механики, многие годы возглавлявшееся М.Ф. Решетневым, первоначально было создано как филиал ОКБ С.П. Королева; это НПО - один из мировых лидеров по разработке космических аппаратов такого назначения.

Создаются спутниковые системы связи, охватывающие практически все страны мира и обеспечивающие двустороннюю оперативную связь с любыми абонентами. Этот вид связи оказался самым надежным и становится все более выгодным. Системы ретрансляции позволяют осуществлять управление космическими группировками с одного пункта на Земле. Созданы и эксплуатируются спутниковые навигационные системы. Без этих систем уже не мыслится сегодня использование современных транспортных средств - торговых судов, самолетов гражданской авиации, военной техники и др.

Произошли качественные изменения и в области пилотируемых полетов. Способность успешно работать вне космического корабля впервые была доказана советскими космонавтами в 1960-1970-х гг., а в 1980-1990-х гг. была продемонстрирована способность человека жить и работать в условиях невесомости в течение года. Во время полетов было проведено также большое число экспериментов - технических, геофизических и астрономических.

Важнейшими являются исследования в области космической медицины и систем жизнеобеспечения. Необходимо глубоко изучить человека и средства жизнеобеспечения тем чтобы определить, что можно поручить человеку в космосе, особенно при продолжительном космическом полете.

Одним из первых космических экспериментов было фотографирование Земли, показавшее, как много могут дать наблюдения из космоса для открытия и разумного использования природных ресурсов. Задачи по разработке комплексов фото- и оптикоэлектронного зондирования земли, картографирования, исследования природных ресурсов, экологического мониторинга, а также по созданию ракет-носителей среднего класса на базе ракет Р-7А выполняет бывший филиал № 3 ОКБ, преобразованный сначала в ЦСКБ, а сегодня в ГРНПЦ "ЦСКБ - Прогресс" во главе с Д.И. Козловым.

В 1967 г. в ходе автоматической стыковки двух беспилотных искусственных спутников Земли "Космос-186" и "Космос-188" была решена крупнейшая научно-техническая проблема встречи и стыковки КА в космосе, позволившая в сравнительно короткие сроки создать первую орбитальную станцию (СССР) и выбрать наиболее рациональную схему полета космических кораблей к Луне с высадкой землян на ее поверхность (США). В 1981 г. был совершен первый полет многоразовой транспортной космической системы "Спейс Шаттл" (США), а в 1991 г. стартовала отечественная система "Энергия" - "Буран".

В целом решение разнообразных задач исследования космоса - от запусков искусственных спутников Земли до запусков межпланетных космических аппаратов и пилотируемых кораблей и станций - дало много бесценной научной информации о Вселенной и планетах Солнечной системы и значительно способствовало техническому прогрессу человечества. Спутники Земли совместно с зонди-рующими ракетами позволили получить детальные данные об околоземном космическом пространстве. Так, при помощи первых искусственных спутников были обнаружены радиационные пояса, в ходе их исследования было глубже изучено взаимодействие Земли с заряженными частицами, испускаемыми Солнцем. Межпланетные космические полеты помогли нам глубже понять природу многих планетарных явлений - солнечного ветра, солнечных бурь, метеоритных дождей и др.

Космические аппараты, запущенные к Луне, передали снимки ее поверхности, сфотографировал и в том числе и ее невидимую с Земли сторону с разрешающей способностью, значительно превосходящей возможности земных средств. Были взяты пробы лунного грун-та, а также доставлены на лунную поверхность автоматические самоходные аппараты "Луноход-1" и "Луноход-2".

Автоматические космические аппараты дали возможность получить дополнительную информацию о форме и гравитационном поле Земли, уточнить тонкие детали формы Земли и ее магнитного поля. Искусственные спутники помогли получить более точные данные о массе, форме и орбите Луны. Массы Венеры и Марса также были уточнены с помощью наблюдений траекторий полетов космических аппаратов.

Большой вклад в развитие передовой техники внесли проектирование, изготовление и эксплуатация очень сложных космических систем. Автоматические космические аппараты, посылаемые к планетам, являются, по сути дела, роботами, управляемыми с Земли посредством радиокоманд. Необходимость разработки надежных систем для решения задач такого рода привела к более совершенному пониманию проблемы анализа и синтеза различных сложных технических систем. Такие системы находят применение как в космических исследованиях, так и во многих других областях человеческой деятельности. Требования космонавтики обусловили необходимость конструирования комплексных автоматических устройств при жестких ограничениях, вызванных грузоподъемностью ракет-носителей и условиями космического пространства, что явилось дополнительным стимулом для быстрого совершенствования автома-тики и микроэлектроники.

В выполнение этих программ большой вклад внесли КБ, руководимые Г.Н. Бабакиным, Г.Я. Гуськовым, В.М. Ковтуненко, Д.И. Козловым, Н.Н. Шереметьевским и др. Космонавтика вызвала к жизни новое направление в технике и строительстве - космодромостроение. Родоначальниками этого направления у нас в стране стали коллективы под руководством круп-ных ученых В.П. Бармина и В.Н. Соловьева. В настоящее время в мире функционирует более десятка космодромов с уникальными наземными автоматизированными комплексами, испытательными станциями и другими сложными средствами подготовки космических аппаратов и ракетносителей к пуску. Россия интенсивно осуществляет запуски с известных всему миру космодромов Байконур и Плесецк, а также проводит экспериментальные пуски с создаваемого на востоке страны космодрома Свободный.

Современные потребности в связи и дистанционном управлении на больших расстояниях привели к развитию высококачественных систем управления и контроля, которые способствовали развитию технических методов слежения за космическими аппаратами и измерения параметров их движения на межпланетных расстояниях, открыв новые области применения спутников. В современной космонавтике это одно из приоритетных направлений. Наземный авто-матизированный комплекс управления, разработанный М.С. Рязанским и Л.И. Гусевым, и сегодня обеспечивает функционирование орбитальной группировки России.

Развитие работ в области космической техники привело к созданию систем космического метеообеспечения, которые с требуемой периодичностью получают снимки облачного покрова Земли и ведут наблюдения в различных диапазонах спектра. Данные метеоспутников являются основой для составления оперативных прогнозов погоды, в первую очередь по большим регионам. В настоящее время практически все страны мира используют космические метеоданные.

Результаты, получаемые в области спутниковой геодезии, особен-но важны для решения военных задач, картирования природных ресурсов, повышения точности траекторных измерений, а также для изучения Земли. С использованием космических средств появляется уникальная возможность решения задач экологического мониторинга Земли и глобального контроля природных ресурсов. Результаты космических съемок оказались эффективным средством наблюдения за развитием посевов сельскохозяйственных культур, выявления заболеваний растительности, измерения некоторых почвенных факторов, состояния водной среды и т.д. Совокупность различных методов космической съемки обеспечивает практически достоверную, полную и детальную информацию о природных ресурсах и состоянии окружающей среды.

Помимо уже определившихся направлений, очевидно, будут развиваться и новые направления использования космической техники, например организация технологических производств, невозможных в земных условиях. Так, невесомость можно использовать для получения кристаллов полупроводниковых соединений. Такие кристаллы найдут применение в электронной промышленности для создания нового класса полупроводниковых приборов. В условиях не-весомости свободно парящий жидкий металл и другие материалы легко деформировать слабыми магнитными полями. Это открывает путь для получения слитков любой наперед заданной формы без их кристаллизации в изложницах, как это делается на Земле. Особенность таких слитков - почти полное отсутствие внутренних напряжений и высокая чистота.

Использование космических средств играет определяющую роль в создании единого информационного пространства России, обеспечении глобальности телекоммуникаций, особенно в период массового внедрения в стране сети Internet. Будущее в развитии Internet - это широкое использование высокоскоростных широкополосных космических каналов связи, ибо в XXI веке обладание и обмен информацией станет не менее важным, чем владение ядерным оружием.

Наша пилотируемая космонавтика нацелена на дальнейшее развитие науки, рациональное использование природных ресурсов Земли, решение задач экологического мониторинга суши и океана. Для этого необходимо создание пилотируемых средств как для полетов на околоземных орбитах, так и для осуществления вековой мечты человечества - полетов к другим планетам.

Возможность осуществления таких замыслов неразрывно связана с решением задач по созданию новых двигателей для полетов в космическом пространстве не требующих значительных запасов топлива, например ионных, фотонных, а также использующих природные силы - силу гравитации,торсионные поля и др.

Создание новых уникальных образцов ракетно-космической техники, а также методов космических исследований, проведение космических экспериментов на автоматических и пилотируемых кораблях и станциях в околоземном космосе, а также на орбитах планет Солнечной системы - благодатная почва объединения усилий ученых и конструкторов разных стран.

В начале XXI века в космическом полете находятся десятки тысяч объектов искусственного происхождения. В их число входят космические аппараты и фрагменты (последние ступени ракет-носителей, обтекатели, переходники и отделяющиеся детали).

Поэтому наряду с остро стоящей проблемой борьбы с загрязнени-ем нашей планеты встанет вопрос борьбы с засорением околоземного космического пространства. Уже в настоящее время одной из проблем является распределение частотного ресурса геостационарной орбиты вследствие ее насыщения К А различного назначения.

Задачи по освоению космического пространства решали и решают в СССР и России ряд организаций и предприятий, возглавляемых плеядой наследников первого Совета главных конструкторов Ю.П. Семеновым, Н.А. Анфимовым, И.В. Барминым, Г.П. Бирюковым, Б.И. Губановым, Г.А. Ефремовым, А.Г. Козловым, Б.И. Каторгиным, Г.Е. Лозино-Лозинским и др.

Вместе с проведением опытно-конструкторских работ развивалось в СССР и серийное производство космической техники. Для создания комплекса "Энергия" - "Буран" в кооперацию по этой работе входило более 1000 предприятий. Директора заводов-изготовителей С.С. Бовкун, А.И. Киселев, И.И. Клебанов, Л.Д. Кучма, А.А. Макаров, В.Д. Вачнадзе, А.А. Чижов и многие другие в короткие сроки отлаживали производство и обеспечивали выпуск продукции. Особо необходимо отметить роль ряда руководителей космической отрасли. Это Д.Ф. Устинов, К.Н. Руднев, В.М. Рябиков, Л.В. Смирнов, С.А. Афанасьев, О.Д. Бакланов, В.Х. Догужиев, О.Н. Шишкин, Ю.Н. Коптев, А.Г. Карась, А.А. Максимов, В.Л. Иванов.

Успешным запуском в 1962 г. "Космоса-4" началось использование космоса в интересах обороны нашей страны. Эта задача решалась сначала НИИ-4 МО, а затем из его состава был выделен ЦНИИ-50 МО. Здесь обосновывалось создание космических систем военного и двойного назначения, в развитие которых определяющий вклад внесли известные военные ученые Т.И. Левин, Г.П. Мельников, И.В. Мещеряков, Ю.А. Мозжорин, П.Е. Эльясберг, И.И. Яцунский и др.

Общепризнано, что применение космических средств позволяет в 1,5-2 раза повысить эффективность действий вооруженных сил. Особенности ведения войн и вооруженных конфликтов кон-ца XX века показали,что роль космоса при решении задач воен-ного противостояния постоянно возрастает. Только космические средства разведки, навигации, связи обеспечивают возможность видения противника на всю глубину его обороны, глобальную связь, высокоточное оперативное определение координат любых объектов,что позволяет вести боевые действия практически "с ходу" на необорудованных в военном отношении территориях и удаленных театрах военных действий. Только использование космических средств позволит обеспечить защиту территорий от ракетно-ядерного нападения любого агрессора. Космос становится основой военного могущества каждого государства - это яркая тенденция нового тысячелетия.

В этих условиях необходимы новые подходы к разработке перспективных образцов ракетно-космической техники, коренным образом отличающихся от существующего поколения космических средств. Так, нынешнее поколение орбитальных средств - это в основном специализированное применение на базе герметичных конструкций, с привязкой к конкретным типам средств выведения. В новом тысячелетии необходимо создание многофункциональных космических аппаратов на базе негерметичных платформ модульной конструкции, разработка унифицированного ряда средств выведения с малозатратной высокоэффективной системой их эксплуатации. Только в этом случае, опираясь на созданный в ракетно-космической отрасли потенциал, Россия в XXI веке сможет значительно ускорить процесс развития своей экономики, обеспечить качественно новый уровень научных исследований, международного сотрудничества, решения социально-экономических проблем и задач укрепления обороноспособности страны, что в конечном счете укрепит ее позиции в мировом сообществе.

Решающую роль в создании российской ракетно-космической науки и техники играли и играют ведущие предприятия ракетно-космической отрасли: ГКНПЦ им. М.В. Хруничева, РКК "Энергия", ЦСКБ, КБОМ, КБТМ и др. Руководство этой работой осуществляется Росавиакосмосом.

В настоящее время российская космонавтика переживает не лучшие дни. Резко снижено финансирование космических программ, ряд предприятий находятся в крайне тяжелом положении. Но российская космическая наука не стоит на месте. Даже в этих сложных условиях российские ученые проектируют космические системы XXI века.

За рубежом начало освоения космического пространства было положено запуском 1 февраля 1958 г. американского КА "Эксплорер-1". Возглавлял американскую космическую программу Вернер фон Браун, являвшийся до 1945 г. одним из ведущих специалистов в области ракетной техники в Германии, а затем работавший в США. Он создал на базе баллистической ракеты "Редстоун" ракету-носитель "Юпитер-С", с помощью которой и был запущен "Эксплорер-1".

20 февраля 1962 г. ракетой-носителем "Атлас", разработанной под руководством К. Боссарта, на орбиту был выведен космический корабль "Меркурий", пилотируемый первым астронавтом США Дж. Тленном. Однако все эти достижения не были полноценными, так как повторяли шаги, уже пройденные советской космонавтикой. Исходя из этого правительство США предприняло усилия, направленные на завоевание лидирующего положения в космической гонке. И в отдельных областях космической деятельности, на отдельных участках космического марафона им это удалось.

Так, США первыми в 1964 г. вывели КА на геостационарную орбиту. Но наибольшим успехом явилась доставка американских астронавтов к Луне на космическом корабле "Аполлон-11" и выход первых людей - Н. Армстронга и Э. Олдрина - на ее поверхность. Это достижение стало возможным благодаря разработке под руководством фон Брауна ракет-носителей типа "Сатурн", созданных в 1964-1967 гг. по программе "Аполлон".

РН "Сатурн" представляли собой семейство двух- и трехступенчатых носителей тяжелого и сверхтяжелого класса, базирующихся на использовании унифицированных блоков. Двухступенчатый вариант "Сатурн-1" позволял выводить на низкую околоземную орбиту полезную нагрузку массой 10,2 т, а трехступенчатый "Сатурн-5" - 139 т (47 т на траекторию полета к Луне).

Крупным достижением в развитии американской космической техники стало создание многоразовой космической системы "Спейс Шаттл" с орбитальной ступенью, обладающей аэродинамическим качеством, первый запуск которой состоялся в апреле 1981 г. И, несмотря на то что все возможности, обеспечиваемые многоразовостью, так и не были полностью использованы, безусловно, это был крупный (хотя и очень дорогостоящий) шаг вперед на пути освоения космоса.

Первые успехи СССР и США побудили некоторые страны к активизации своих усилий в космической деятельности. Американскими носителями были запущены первый английский КА "Ариэль-1" (1962 г.), первый канадский КА "Алуэт-1" (1962 г.), первый итальянский КА "Сан-Марко" (1964 г.). Однако запуски КА чужими носителями ставили страны - владельцы КА в зависимость от США. Поэтому начались работы по созданию собственных носителей. Наибольших успехов на этом поприще достигла Франция, уже в 1965 г. запустившая КА "А-1" собственным носителем "Диаман-А". В дальнейшем, развивая этот успех, Франция разработала семейство носителей "Ариан", являющееся одним из самых рентабельных.

Несомненным успехом мировой космонавтики было осуществление программы ЭПАС, заключительный этап которой - запуск и стыковка на орбите космических кораблей "Союз" и "Аполлон" - был осуществлен в июле 1975 г. Этот полет ознаменовал собой начало международных программ, которые успешно развивались в последнюю четверть XX века и несомненным успехом которых явились изготовление, запуск и сборка на орбите Международной космической станции. Особое значение приобрела международная кооперация в сфере космических услуг, где лидирующее место принадлежит ГКНПЦ им. М.В. Хруничева.

В этой книге авторы на основе своего многолетнего опыта работы в области проектирования и практического создания ракетно-космических систем, анализа и обобщения известных им разработок по космонавтике в России и за рубежом изложили свою точку зрения на развитие космонавтики в XXI веке. Ближайшее будущее определит, правы мы были или нет. Хотелось бы выразить благодарность за ценные советы по содержанию книги академикам РАН Н.А. Анфимову и А.А. Галееву, докторам технических наук Г.М. Тамковичу и В.В. Остроухову.

Авторы благодарят за помощь по сбору материалов и обсуждению рукописи книги доктора технических наук, профессора Б.Н. Родионова, кандидатов технических наук А.Ф. Акимова, Н.В. Васильева, И.Н. Голованева, С.Б. Кабанова, В.Т. Коновалова, М.И. Макарова, A.M. Максимова, Л.С. Медушевского, Е.Г. Трофимова, И.Л. Черкасова, кандидата военных наук С.В. Павлова, ведущих специалистов НИИ КС А.А. Качекана, Ю.Г. Пичурина, В.Л. Светличного, а также Ю.А. Пешнина и Н.Г. Макарову за техническую помощь в подготовке книги. Авторы выражают глубокую признательность за ценные советы по содержанию рукописи кандидатам технических наук Е.И. Моторному, В.Ф. Нагавкину, O.K. Роскину, С.В. Сорокину, С.К. Шаевичу, В.Ю. Юрьеву и директору программы И.А. Глазковой.

Авторы с благодарностью воспримут все замечания, предложения и критические статьи, которые, мы полагаем, последуют после издания книги и еще раз подтвердят, что проблемы космонавтики действительно актуальны и требуют пристального внимания ученых и практиков, а также всех тех, кто живет будущим.

Первые экспериментальные суборбитальные космические полёты были осуществлены ещё немецкой ракетой Фау-2 в 1944 году . Однако начало практическому освоению космоса было положено 4 октября 1957 года запуском первого искусственного спутника Земли (ИСЗ) в Советском Союзе.

Первые годы развития космонавтики характеризовались не сотрудничеством, а острой конкуренцией между государствами (так называемая Космическая гонка). Международное сотрудничество стало интенсивно развиваться только в последние десятилетия, в первую очередь, благодаря совместному строительству Международной космической станции и исследованиям, проводимым на её борту.

Российский ученый Константин Циолковский был одним из первых, кто выдвинул идею об использовании ракет для космических полетов. Ракету для межпланетных сообщений он спроектировал в 1903 г.

Немецкий ученый Герман Оберт в 1920-е годы также изложил принципы межпланетного полета.

Американский ученый Роберт Годдард в 1923 году начал разрабатывать жидкостный ракетный двигатель и работающий прототип был создан к концу 1925 г. 16 марта 1926 г. он осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР и Германии. В СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). В 1933 г. на их базе был создан Реактивный институт (РНИИ).

В Германии подобные работы вело Немецкое Общество межпланетных сообщений (VfR). 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты. VfR работал и Вернер фон Браун, который с декабря 1932 г. начал разработку ракетных двигателей на артиллерийском полигоне германской армии в Куммерсдорфе. После прихода нацистов к власти в Германии были выделены средства на разработку ракетного оружия, и весной 1936 г. была одобрена программа строительства ракетного центра в Пенемюнде, техническим директором которого был назначен фон Браун. В нем была разработана баллистическая ракета А-4 с дальностью полета 320 км. Во время Второй мировой войны 3 октября 1942 г. состоялся первый успешный запуск этой ракеты, а в 1944 г. началось ее боевое применение под названием V-2.

Военное применение V-2 продемострировало огромные возможности ракетной техники, и наиболее мощные послевоенные державы — США и СССР — также начали разработку баллистических ракет.

Для реализации задачи создания ядерного оружия и средств его доставки 13 мая 1946 года Совет Министров СССР принял постановление о развёртывании масштабной работы по развитию отечественного ракетостроения. В соответствии с этим постановлением был создан Научно-исследовательский артиллерийский институт реактивного вооружения № 4.

Начальником института был назначен генерал А. И. Нестеренко, его заместителем по специальности «Жидкостные баллистические ракеты» — полковник М. К. Тихонравов, соратник С. П. Королёва по ГИРДу и РНИИ. Михаил Клавдиевич Тихонравов был известен как создатель первой жидкостной ракеты, стартовавшей в Нахабино 17 августа 1933 года. Он же в 1945 году возглавил проект подъёма двух космонавтов на высоту 200 километров с помощью ракеты типа «Фау-2» и управляемой ракетной кабины. Проект был поддержан Академией наук и одобрен Сталиным. Однако в трудные послевоенные годы руководству военной отрасли было не до космических проектов, которые воспринимались как фантастика, мешающая выполнению главной задачи по созданию «дальнобойных ракет».

Исследуя перспективы развития ракет, создаваемых по классической последовательной схеме, М. К. Тихонравов приходит к выводу об их непригодности для межконтинентальных расстояний. Исследования, проведённые под руководством Тихонравова, показали, что пакетная схема из ракет, созданных в КБ Королёва, обеспечит скорость в четыре раза большую, чем возможная при обычной компоновке. Внедрением «пакетной схемы» группа Тихонравова приблизила осуществление своей заветной мечты о выходе человека в космическое пространство. В инициативном порядке продолжались исследования проблем, связанных с запуском и возвращением на Землю ИСЗ.

16 сентября 1953 года по заказу ОКБ Королёва в НИИ-4 была открыта первая научно-исследовательская работа по космической тематике «Исследования по вопросу создания первого искусственного спутника Земли». Группа Тихонравова, имевшая солидный задел по этой теме, выполнила её оперативно.

В 1956 году М. К. Тихонравов с частью своих сотрудников переводится из НИИ-4 в ОКБ Королёва начальником отдела по проектированию спутников. При его непосредственном участии создаются первые ИСЗ, пилотируемые корабли, проекты первых автоматических межпланетных и лунных аппаратов.

Важнейшие этапы освоения космоса

В 1957 г. под руководством Королева была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

3 ноября 1957 — запущен второй искусственный спутник Земли Спутник-2 впервые выведший в космос живое существо — собаку Лайку. (СССР).

4 января 1959 — станция «Луна-1» прошла на расстоянии 6000 километров от поверхности Луны и вышла на гелиоцентрическую орбиту. Она стала первым в мире искусственным спутником Солнца. (СССР).

14 сентября 1959 — станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Ясности вблизи кратеров Аристид, Архимед и Автолик, доставив вымпел с гербом СССР. (СССР).

4 октября 1959 — запущена АМС «Луна-3», которая впервые в мире сфотографировала невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр. (СССР).

19 августа 1960 — совершен первый в истории орбитальный полёт в космос живых существ с успешным возвращением на Землю. На корабле «Спутник-5» орбитальный полёт совершили собаки Белка и Стрелка. (СССР).

12 апреля 1961 — совершён первый полёт человека в космос (Ю. Гагарин) на корабле Восток-1. (СССР).

12 августа 1962 — совершен первый в мире групповой космический полет на кораблях Восток-3 и Восток-4. Максимальное сближение кораблей составило порядка 6.5 км. (СССР).

16 июня 1963 — совершен первый в мире полет в космос женщины-космонавта (Валентина Терешкова) на космическом корабле Восток-6. (СССР).

12 октября 1964 — совершил полет первый в мире многоместный космический корабль Восход-1. (СССР).

18 марта 1965 — совершён первый в истории выход человека в открытый космос. Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2. (СССР).

3 февраля 1966 — АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны. (СССР).

1 марта 1966 — станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР. Это был первый в мире перелет космического аппарата с Земли на другую планету. (СССР).

30 октября 1967 — произведена первая стыковка двух беспилотных космических аппаратов «Космос-186» и «Космос-188». (CCCР).

15 сентября 1968 — первое возвращение космического аппарата (Зонд-5) на Землю после облета Луны. На борту находились живые существа: черепахи, плодовые мухи, черви, растения, семена, бактерии. (СССР).

16 января 1969 — произведена первая стыковка двух пилотируемых космических кораблей Союз-4 и Союз-5. (СССР).

21 июля 1969 — первая высадка человека на Луну (Н. Армстронг) в рамках лунной экспедиции корабля Аполлон-11, доставившей на Землю, в том числе и пробы лунного грунта. (США).

24 сентября 1970 — станция «Луна-16» произвела забор и последующую доставку на Землю (станцией «Луна-16») образцов лунного грунта. (СССР). Она же — первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).

17 ноября 1970 — мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого самоходного аппарата, управляемого с Земли: Луноход-1. (СССР).

3 марта 1972 — запуск первого аппарата, покинувшего впоследствии пределы Солнечной системы: Пионер-10. (США).

октябрь 1975 — мягкая посадка двух космических аппаратов «Венера-9» и «Венера-10» и первые в мире фотоснимки поверхности Венеры. (СССР).

12 апреля 1981 — первый полет первого многоразового транспортного космического корабля («Колумбия». (США).

20 февраля 1986 — вывод на орбиту базового модуля орбитальнной станции [[Мир_(орбитальная_станция)]Мир]

20 ноября 1998 — запуск первого блока Международной космической станции. Производство и запуск (Россия). Владелец (США).

24 июня 2000 — станция «NEAR Shoemaker» стала первым искусственным спутником астероида(433 Эрос). (США).

Сегодня

Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства. Активно развивается космический туризм. Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу).

В 2009 году в мире на космические программы было потрачено $68 млрд, в том числе в США — $48,8 млрд, ЕС — $7,9 млрд, Японии — $3 млрд, России — $2,8 млрд, Китае — $2 млрд





error: Контент защищен !!