Реакции пластического и энергетического обмена протекают одновременно. Энергетический и пластический обмен, их взаимосвязь

Метаболизм, то есть совокупность всех химических реакций, происходящих в организме, включает в себя энергетический и пластический обмен. Первый - это реакции, направленные на получение энергии вследствие расщепления сложных органических соединений на более простые. Он еще называется катаболизмом. Пластический обмен называют еще анаболизмом. Он подразумевает реакции, с помощью которых организм синтезирует нужные ему сложные химические вещества из простых с использованием энергии. Таким образом, получается, что, добыв энергию в процессе катаболизма, часть её организм тратит на синтез новых органических веществ.

Энергетический обмен: особенности и этапы

Этот вид обмена веществ осуществляется в три стадии: подготовительная, анаэробное брожение, или гликолиз, и клеточное дыхание. Рассмотрим их более подробно:

Пластический обмен — это что? Какие у него особенности?

Рассмотрев процесс катаболизма, можно перейти к описанию анаболизма, который является важной составляющей обмена веществ. Вследствие этого процесса образуются вещества, из которых построена клетка и весь организм в целом, которые могут служить в качестве гормонов или ферментов и т. д. Пластический обмен (он же биосинтез, или анаболизм) происходит, в отличие от катаболизма, исключительно в клетке. Он включает в себя три разновидности: фотосинтез, хемосинтез и биосинтез белков. Первый используется только растениями и некоторыми фотосинтезирующими бактериями. Такие организмы называются автотрофами, так как сами вырабатывают для себя органические соединения из неорганических. Второй используется определенными бактериями, в том числе и анаэробными, для жизни которых не требуется кислород. Формы жизни, использующие хемосинтез, называются хемотрофами. Животные и грибы относятся к гетеротрофам — существам, которые получают органические вещества из других организмов.

Фотосинтез

Это процесс, который, по сути, является основой жизни на планете Земля. Всем известно, что растения забирают из атмосферы углекислый газ и отдают кислород, но давайте более подробно рассмотрим, что же происходит во время фотосинтеза. Этот процесс осуществляется посредством реакции, которая предусматривает образование глюкозы и кислорода из углекислого газа и воды. Очень важный фактор - наличие солнечной энергии. Во время такого химического взаимодействия из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна - глюкозы.

Где происходит этот процесс?

Местом проведения подобного рода реакции являются зеленые листья растений, а точнее хлоропласты, которые содержатся в их клетках. В этих органеллах содержится хлорофилл, благодаря которому и происходит фотосинтез. Данное вещество также обеспечивает зеленый цвет листков. Хлоропласт окружен двумя мембранами, а в его цитоплазме расположены граны — стопки из тилакоидов, которые имеют собственную мембрану и содержат хлорофилл.

Хемосинтез

Хемосинтез — это также пластический обмен. только характерен он для микроорганизмов, в том числе и серных, нитрифицирующих и железобактерий. Они используют энергию, полученную в процессе окисления определенных веществ, для восстановления углекислого газа до органических соединений. Веществами же, которые окисляются данными бактериями в процессе энергетического обмена, являются сероводород для первых, аммиак для вторых и закись железа для последних.

Биосинтез белков

Обмен белков в организме подразумевает расщепление тех, которые были употреблены в пищу, на аминокислоты и построение из последних своих собственных белков, свойственных именно данному живому существу. Пластический обмен - это синтез белков клеткой, он включает в себя два основных процесса: транскрипцию и трансляцию.

Транскрипция

Это слово многим известно из уроков английского языка, однако в биологии данный термин имеет совсем другое значение. Транскрипция — это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. Осуществляется он в ядре клетки и насчитывает три стадии: образование первичного транскрипта, процессинг и сплайсинг.

Трансляция

Этот термин обозначает перенос зашифрованной на иРНК информации о структуре белка на синтезирующийся полипептид. Местом для проведения данного процесса служит цитоплазма клетки, а именно, рибосома — специальный органоид, который отвечает за синтез белков. Это органелла овальной формы, состоящая из двух частей, которые соединяются в присутствии иРНК.

Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом под названием аминоацил Т-РНК-синтетаза. Для этого также используется АТФ. Впоследствии образуется аминоациладенилат. Далее следует процесс присоединения активированной аминокислоты к транспортной РНК, при этом выделяется АМФ (аденозинмонофосфат). Затем, на третьем этапе, образованный комплекс соединяется с рибосомой. Далее происходит включение аминокислот в структуру белка в определенном порядке, после чего тРНК высвобождается.

Метаболизм, то есть совокупность всех химических реакций, происходящих в организме, включает в себя энергетический и пластический обмен. Первый - это реакции, направленные на получение энергии вследствие расщепления сложных органических соединений на более простые. Он еще называется катаболизмом. Пластический обмен называют еще анаболизмом. Он подразумевает реакции, с помощью которых организм синтезирует нужные ему сложные химические вещества из простых с использованием энергии. Таким образом, получается, что, добыв энергию в процессе катаболизма, часть её организм тратит на синтез новых органических веществ.

Энергетический обмен: особенности и этапы

Этот вид обмена веществ осуществляется в три стадии: подготовительная, анаэробное брожение, или гликолиз, и клеточное дыхание. Рассмотрим их более подробно:

Пластический обмен — это что? Какие у него особенности?

Рассмотрев процесс катаболизма, можно перейти к описанию анаболизма, который является важной составляющей обмена веществ. Вследствие этого процесса образуются вещества, из которых построена клетка и весь организм в целом, которые могут служить в качестве гормонов или ферментов и т. д. Пластический обмен (он же биосинтез, или анаболизм) происходит, в отличие от катаболизма, исключительно в клетке. Он включает в себя три разновидности: фотосинтез, хемосинтез и биосинтез белков. Первый используется только растениями и некоторыми фотосинтезирующими бактериями. Такие организмы называются автотрофами, так как сами вырабатывают для себя органические соединения из неорганических. Второй используется определенными бактериями, в том числе и анаэробными, для жизни которых не требуется кислород. Формы жизни, использующие хемосинтез, называются хемотрофами. Животные и грибы относятся к гетеротрофам — существам, которые получают органические вещества из других организмов.

Фотосинтез

Это процесс, который, по сути, является основой жизни на планете Земля. Всем известно, что растения забирают из атмосферы углекислый газ и отдают кислород, но давайте более подробно рассмотрим, что же происходит во время фотосинтеза. Этот процесс осуществляется посредством реакции, которая предусматривает образование глюкозы и кислорода из углекислого газа и воды. Очень важный фактор - наличие солнечной энергии. Во время такого химического взаимодействия из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна - глюкозы.

Где происходит этот процесс?

Местом проведения подобного рода реакции являются зеленые листья растений, а точнее хлоропласты, которые содержатся в их клетках. В этих органеллах содержится хлорофилл, благодаря которому и происходит фотосинтез. Данное вещество также обеспечивает зеленый цвет листков. Хлоропласт окружен двумя мембранами, а в его цитоплазме расположены граны — стопки из тилакоидов, которые имеют собственную мембрану и содержат хлорофилл.

Хемосинтез

Хемосинтез — это также пластический обмен. только характерен он для микроорганизмов, в том числе и серных, нитрифицирующих и железобактерий. Они используют энергию, полученную в процессе окисления определенных веществ, для восстановления углекислого газа до органических соединений. Веществами же, которые окисляются данными бактериями в процессе энергетического обмена, являются сероводород для первых, аммиак для вторых и закись железа для последних.

Биосинтез белков

Обмен белков в организме подразумевает расщепление тех, которые были употреблены в пищу, на аминокислоты и построение из последних своих собственных белков, свойственных именно данному живому существу. Пластический обмен - это синтез белков клеткой, он включает в себя два основных процесса: транскрипцию и трансляцию.

Транскрипция

Это слово многим известно из уроков английского языка, однако в биологии данный термин имеет совсем другое значение. Транскрипция — это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. Осуществляется он в ядре клетки и насчитывает три стадии: образование первичного транскрипта, процессинг и сплайсинг.

Трансляция

Этот термин обозначает перенос зашифрованной на иРНК информации о структуре белка на синтезирующийся полипептид. Местом для проведения данного процесса служит цитоплазма клетки, а именно, рибосома — специальный органоид, который отвечает за синтез белков. Это органелла овальной формы, состоящая из двух частей, которые соединяются в присутствии иРНК.

Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом под названием аминоацил Т-РНК-синтетаза. Для этого также используется АТФ. Впоследствии образуется аминоациладенилат. Далее следует процесс присоединения активированной аминокислоты к транспортной РНК, при этом выделяется АМФ (аденозинмонофосфат). Затем, на третьем этапе, образованный комплекс соединяется с рибосомой. Далее происходит включение аминокислот в структуру белка в определенном порядке, после чего тРНК высвобождается.

В клетках постоянно осуществляются обмен веществ (метаболизм) - многообразные химические превращения, обеспечивающие их рост, жизнедеятельность, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ белки, жиры, углеводы и другие вещества, входящие в состав клетки, непрерывно расщепляются и синтезируются.

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов - пластического и энергетического обменов .

Реакции пластичесРеакции пластического и энергетического обменов взаимосвязаны и в своем единстве составляют обмен веществ и превращение энергии в каждой клетке и в организме в целом.

Пластический обмен

Суть пластического обмена заключается в том, что из простых веществ, поступающих в клетку извне, образуются вещества клетки. Рассмотрим этот процесс на примере образования важнейших органических соединений клетки - белков.

В синтезе белка - этом сложном, многоступенчатом процессе -участвуют ДНК, мРНК, тРНК, рибосомы, АТФ и разнообразные ферменты. Начальный этап белкового синтеза - образование полипептидной цепи из отдельных аминокислот, расположенных в строго определенной последовательности. Главная роль в определении порядка расположения аминокислот, т.е. первичной структуры белка, принадлежит молекулам ДНК. Последовательность аминокислот в белках определена последовательностью нуклеотидов в молекуле ДНК.

Синтез белка осуществляется на рибосомах, а информация о структуре белка зашифрована в ДНК, расположенной в ядре. Для того чтобы синтезировался белок, информация о последовательности аминокислот в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа: транскрипцию и трансляцию.

Транскрипция (буквально - переписывание) протекает как реакция матричного синтеза. На цепи ДНК, как на матрице, по принципу комплементарности синтезируется цепь иРНК, которая по своей нуклеотидной последовательности точно копирует (комплементарна) полинуклеотидной цепи ДНК, причем тимину в ДНК соответствует урацил в РНК. Информационная РНК - это копия не всей молекулы ДНК, а только части ее - одного гена, несущего информацию о структуре белка, сборку которого необходимо произвести.

Начинается следующий этап биосинтеза - трансляция: сборка полипептидных цепей на матрице иРНК. По мере сборки белковой молекулы рибосома перемещается по молекуле иРНК, причем перемещается не плавно, а прерывисто, триплет за триплетом. По мере перемещения рибосомы по молекуле мРНК сюда же с помощью тРНК доставляются аминокислоты, соответствующие триплетам мРНК. К каждому триплету, на котором останавливается в своем передвижении по нитевидной молекуле мРНК рибосома, строго комплементарно присоединяется тРНК. При этом аминокислота, связанная с тРНК, оказывается у активного центра рибосомы. Здесь специальные ферменты рибосомы отщепляют аминокислоту от тРНК и присоединяют к предыдущей аминокислоте. После установки первой аминокислоты рибосома передвигается на один триплет, а тРНК, оставив аминокислоту, мигрирует в цитоплазму за следующей аминокислотой. С помощью такого механизма шаг за шагом наращивается белковая цепь. Аминокислоты соединяются в ней в строгом соответствии с расположением кодирующих триплетов в цепи молекулы мРНК. Чем дальше продвинулась рибосома по иРНК, тем больший отрезок белковой молекулы «собран». Когда рибосома достигнет противоположного конца иРНК, синтез окончен. Нитевидная молекула белка отделяется от рибосомы. Молекула мРНК может использоваться для синтеза полипептидов многократно, как и рибосома. На одной молекуле иРНК может размещаться несколько рибосом (полирибосома). Их число определяется длиной мРНК.


Биосинтез белков - сложный многоступенчатый процесс, каждое звено которого катализируется определенными ферментами и снабжается энергией за счет молекул АТФ.

Энергетический обмен

Процессом, противоположным синтезу, является диссимиляция - совокупность реакций расщепления. В результате диссимиляции освобождается энергия, заключенная в химических связях пищевых веществ. Эта энергия используется клеткой для осуществления различной работы, в том числе и ассимиляции. При расщеплении пищевых веществ энергия выделяется поэтапно при участии ряда ферментов. В энергетическом обмене обычно выделяют три этапа.

Первый этап - подготовительный. На этом этапе сложные высокомолекулярные органические соединения расщепляются ферментативно, путем гидролиза, до более простых соединений - мономеров, из которых они состоят: белки - до аминокислот, углеводы - до моносахаридов (глюкозы), нуклеиновые кислоты - до нуклеотидов и т.д. На данном этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап - бескислородный, или анаэробный. Он называется также анаэробным дыханием (гликолизом) или брожением. Гликолиз происходит в клетках животных. Он характеризуется ступенчатостью, участием более десятка различных ферментов и образованием большого числа промежуточных продуктов. Например, в мышцах в результате анаэробного дыхания шестиуглеродная молекула глюкозы распадается на 2 молекулы пировиноградной кислоты (С3Н403), которые затем восстанавливаются в молочную кислоту (С3Н603). В этом процессе принимают участие фосфорная кислота и АДФ. Суммарное выражение процесса следующее:

С6Н1 206+ 2Н3Р04+ 2АДФ -» 2С3Н603+ 2АТФ + 2Н20.

В ходе расщепления выделяется около 200 кДж энергии. Часть этой энергии (около 80 кДж) расходуется на синтез двух молекул АТФ, благодаря чему 40% энергии сохраняется в виде химической связи в молекуле АТФ. Оставшиеся 120 кДж энергии (более 60 %) рассеиваются в виде теплоты. Процесс этот малоэффективный.

При спиртовом брожении из одной молекулы глюкозы в результате многоступенчатого процесса в конечном счете образуются две молекулы этилового спирта, две молекулы С02

С6Н1206+ 2Н3Р04+ 2АДФ -> 2С2Н5ОН ++ 2С02+ 2АТФ + 2Н20.

В этом процессе выход энергии (АТФ) такой же, как и при гликолизе. Процесс брожения - источник энергии для анаэробных организмов.

Третий этап - кислородный, или аэробное дыхание, или кислородное расщепление. На этой стадии энергетического обмена происходит последующее расщепление образовавшихся на предыдущем этапе органических веществ путем окисления их кислородом воздуха до простых неорганических, являющихся конечными продуктами - СО2и Н20. Кислородное дыхание сопровождается выделением большого количества энергии (около 2600 кДж) и аккумуляцией ее в молекулах АТФ.

В суммарном виде уравнение аэробного дыхания выглядит так:

2С3Н603+ 602+ 36АДФ -» 6С02+ 6Н20 + 36АТФ + 36Н20.

Таким образом, при окислении двух молекул молочной кислоты за счет выделившейся энергии образуется 36 энергоемких молекул АТФ. Следовательно, основную роль в обеспечении клеткиэнергией играет аэробное дыхание.

Пластический обмен (анаболизм, ассимиляция) - совокупность всех реакций биологического синтеза. Эти вещества идут на построение органоидов клетки и создание новых клеток при делении.Пластический обмен всегда сопровождается поглощением энергии.

Энергетический обмен (катаболизм, диссимиляция) - совокупность реакций расщепления сложных высокомолекулярных органических веществ - белков, нуклеиновых кислот, жиров, углеводов на более простые, низкомолекулярные. При этом выделяется энергия, заключенная в химических связях крупных органических молекул. Освобожденная энергия запасается в форме богатых энергией фосфатных связей АТФ.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии.

Впервые мысль о том, что постоянство внутренней среды обеспечивает оптимальные условия для жизни и размножения организмов, была высказана в 1857 г. французским физиологом Клодом Бернаром. В 1932 г. американский физиолог Уолтер Кэннон ввел термин гомеостаз (от греч. homoios - тот же, stasis - состояние) для определения механизмов, поддерживающих «постоянство внутренней среды». Функция гомеостатических механизмов состоит в том, что они поддерживают стабильность клеточного окружения и тем самым обеспечивают независимость организма от внешней среды - в той мере, в какой эти механизмы эффективны. Независимость от условий окружающей среды является показателем жизненного успеха, и на этом основании млекопитающих следует рассматривать как преуспевающий класс: они способны поддерживать относительно постоянный уровень активности, несмотря на колебания внешних условий.

Для того, чтобы обеспечить более или менее стабильную активность организма, необходима регуляция на всех уровнях - от молекулярного до популяционного. Это требует использования различных биохимических, физиологических и поведенческих механизмов, наиболее соответствующих уровню сложности и образу жизни данного вида, и во всех этих отношениях млекопитающие, лучше вооружены, чем простейшие.

Внутреннюю среду организма и ее регуляцию можно рассматривать на двух уровнях - на уровне клеток и на уровне тканей.

С помощью дыхательной и кровеносной систем регулируются постоянный уровень кислорода, углекислого газа и метаболитов во внутренней среде организма.

Терморегуляция

Тепло - форма энергии, имеющая очень важное значение для поддержания живых систем. Все живые системы нуждаются в непрерывном снабжении теплом для предотвращением их деградации и гибели. Главным источником тепла для всех живых существ служит солнечная энергия. Солнечная радиация превращается в экзогенный (находящийся вне организма) источник тепла во всех случаях, когда она падает на организм и им поглощается. Сила и характер воздействия солнечного излучения зависят от географического положения и являются важными факторами, определяющими климат региона. В свою очередь климат определяет наличие и обилие видов растений и животных в данной местности.

Все животные получают тепло из двух источников - непосредственно из внешней среды и из химических субстратов, подвергающихся расщеплению в клетках. Птицы и млекопитающие способны поддерживать достаточно постоянную температуру тела независимо от окружающей среды. Их называют гомойотермными , или теплокровными. В отличие от них, все беспозвоночные и низшие позвоночные являются пойкилотермными, так как они не могут сохранять постоянную температуру тела.. Теплокровные животные относительно мало зависят от внешних источников тепла, так как благодаря высокой интенсивности обмена у них вырабатывается достаточное количество тепла, которое может сохраняться. Поскольку эти животные существуют за счет внутренних источников тепла, их называют также эндотермными.

Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме:

1.анаболизм (ассимиляция, пластический обмен ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

2.катаболизм (диссимиляция, энергетический обмен ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

Анаболизм и катаболизм связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

Живые существа для своей жизнедеятельности используют световую и химическую энергию.

Зеленые растения – автотрофы – синтезируют органические соединения в процессе фотосинтеза , используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода.

Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами.

Особая группа организмов – миксотрофы – питаются смешанным способом – это растения росянка, венерина мухоловка (среди растений есть даже гетеротроф – раффлезия); одноклеточное животное эвглена зеленая.

Ферменты – это специфические белки – катализаторы. Термин «специфические » означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций.

Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами . В молекуле фермента есть активный центр , пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

Ферментами катализируются все биохимические реакции.

Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

Направленных на образование составных частей клеток и тканей . Анаболизм взаимосвязан с противоположным процессом - катаболизмом , так как продукты распада различных соединений могут вновь использоваться при анаболизме, образуя в иных сочетаниях новые вещества . Процессы анаболизма, происходящие в зелёных растениях с поглощением энергии солнечных лучей (см. Фотосинтез), имеют планетарное значение, играя решающую роль в синтезе органических веществ из неорганических .

Анаболизм (пластический обмен, ассимиляция) - одна из сторон обмена веществ. Включает процессы синтеза аминокислот, моносахаридов, жирных кислот, нуклеотидов, полисахаридов, макромолекул белков, нуклеиновых кислот, АТФ.

Анаболизм - синтез собственных органических соединений из полученных питательных веществ, идёт с потреблением энергии, полученной при окислении. Процесс происходит в три этапа: 1. Синтез промежуточных соединений из низкомолекулярных веществ. 2. Синтез "строительных блоков" из промежуточных соединений. 3. Синтез из "строительных блоков" макромолекул белков, нуклеиновых кислот, полисахаридов, жиров.Идет с поглощением энергии и участием ферментов.

В результате такого обмена из питательных веществ, поступающих в клетку, строятся свойственные организму белки , жиры , углеводы , которые, в свою очередь, идут уже на создание новых клеток, их органов, межклеточного вещества. Противоположностью пластического обмена является энергетический катаболизм - (совокупность реакций разложения, идущих с выделением энергии).

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Пластический обмен" в других словарях:

    Метаболизм, совокупность протекающих в живых организмах химич. превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря О. в. происходит расщепление и синтез молекул,… … Биологический энциклопедический словарь

    обмен веществ - ▲ органическая реакция (быть) в, организм обмен веществ, метаболизм ферментативные реакции в организме. биосинтез. автолиз. десмолиз. ассимиляция, анаболизм. диссимиляция, катаболизм. пластический обмен совокупность реакций биосинтеза.… … Идеографический словарь русского языка

    - (метаболизм), совокупность хим. процессов, обеспечивающих жизнедеятельность организма. Хим. превращ. в организме осуществляются в двух противоположных направлениях синтез сложных соед. из более простых (а н а б о л и з м, или а с с и м и л я ц и… … Химическая энциклопедия

    Диетотерапия один из важнейших методов лечения лиц с сахарным диабетом, наиболее важный компонент в достижении стойкой компенсации углеводного обмена, а в доинсулиновую эру единственный способ несколько продлить жизнь больному ИЗСД … Википедия

    Действующее вещество ›› Пирацетам* (Piracetam*) Латинское название Pyramem АТХ: ›› N06BX03 Пирацетам Фармакологическая группа: Ноотропы Нозологическая классификация (МКБ 10) ›› F03 Деменция неуточненная ›› F09 Органическое или симптоматическое… … Словарь медицинских препаратов

    - (от греч. ἀναβολή, «подъём») или пластический обмен совокупность химических процессов, составляющих одну из сторон обмена веществ в организме, направленных на образование клеток и тканей. Анаболизм взаимосвязан с противоположным… … Википедия

    ВВГБТАТНВЦ-АЯ - HEt BHiH С И С ГОД 4 U ВЕГЕТАТИВНАЯ НЕГПНАН CIH TFMA III й*гл*. 4411^1. Jinn РИ"И рягцхш^чпт* dj ^LbH }



error: Контент защищен !!