Соединения марганца. Гидрид марганца Растворимость перманганатов щелочных металлов в воде

Первые систематические исследования растворимости водорода в марганце принадлежат Люкемейеру-Хассе и Шенку. Они показали, что изменение растворимости сопровождается α⇔β-превращением. Так как они проводили эксперименты с марганцем промышленной чистоты, то, возможно, неудивительно, что полученные ими результаты не согласуются с количественными значениями, установленными в более поздних работах, проведенных на марганце высокой степени чистоты.
Обстоятельные исследования в температурном интервале от 20 до 1300° выполнены Сивертсом и Морицем на дистилляте марганца, а также Поттером и Люкенсом на электролитическом дистиллированном марганце. В обоих случаях при различных температурах измерялось давление водорода, находящегося в равновесии с предварительно полностью дегазированным металлом.
В обеих работах были получены очень близкие результаты. На рис. 79 приведены данные Сивертса и Морица относительно объема водорода, адсорбированного 100 г марганца в температурном интервале от 20 до 1300° при нагреве и охлаждении двух образцов чистого марганца.

Растворимость водорода в α-модификации марганца вначале уменьшается, а затем увеличивается при повышении температуры. Растворимость водорода в β-марганце заметно выше, чем в α-марганце, следовательно, превращение β→α-сопровождается заметным увеличением адсорбции водорода. Растворимость в β-марганце растет с температурой.
β→γ-превращение также сопровождается увеличением растворимости водорода, которая в γ-марганце, так же как и в β-марганце, растет с температурой. Превращение сопровождается уменьшением растворимости. Растворимость водорода в δ-марганце растет до температуры плавления, а растворимость водорода в жидком марганце заметно выше его растворимости в любой из модификаций марганца в твердом состоянии.
Таким образом, изменение растворимости водорода в различных аллотропических модификациях марганца позволяет разработать простой и изящный метод исследований температур аллотропических превращений, а также их гистерезиса при различных скоростях нагрева и охлаждения.
Результаты Поттера и Люкенса, в общем, весьма близки к результатам Сивертса и Морица, в чем можно убедиться, рассматривая данные табл. 47. Сходимость результатов весьма хорошая, если не считать изменения растворимости в α-фазе в интервале температур от комнатной до 500°: Сивертс и Мориц нашли, что растворимость намного выше, чем следует из данных Поттера и Люкенса. Причина такого расхождения неясна.


Поттер и Люкенс нашли, что при постоянной температуре растворимость водорода (V) меняется с изменением давления (P) по зависимости:

где К - постоянная.
Ни один исследователь не нашел никаких гидридов марганца.
Содержание водорода в электролитическом марганце. Поскольку водород осаждается на катоде во время электрического осаждения, то неудивительно, что полученный таким образом металл должен содержать водород.
Содержание водорода в электролитическом марганце и вопросы, связанные с его удалением, изучали Поттер, Хэйз и Люкенс. Исследовали обычный электролитический марганец промышленной чистоты, который предварительно выдерживали в течение трех месяцев при комнатной температуре.
Измерения освобождаемого (выделяемого) объема водорода производили при температурах до 1300°; результаты приведены на рис. 80.
При нагреве до 200° выделяется очень мало газа, но уже при 300° освобождается весьма значительный объем. Немногим больше выделяется при 400°, однако при последующем нагреве количество освобождаемого водорода немного изменяется, за исключением тех случаев, когда растворимость меняется в связи с аллотропическими превращениями марганца.
Найдено, что марганец содержит приблизительно 250 см3 водорода на 100 г металла. При нагреве до 400° в течение 1 часа на воздухе при нормальном давлении удаляется 97% того количества, которое может быть удалено. Как и следовало ожидать, при уменьшении внешнего давления требуется меньшая продолжительность нагрева для удаления того же количества водорода.
Полагают, что водород, присутствующий в марганце, образует пересыщенный твердый раствор внедрения. Влияние водорода на параметры решетки α-марганца изучали Поттер и Губер; наблюдается определенное расширение (увеличение) решетки (табл. 48), составляющее 0,0003% при 1 см3 водорода на 100 г металла.
Нагрев для удаления водорода вызывает сжатие (уменьшение) решетки (табл. 49).

Точные измерения параметров решетки на образцах с высоким содержанием водорода весьма затруднительны, так как получается размытая дифракционная картина. Поттер и Губер связывают это с неоднородным распределением газа в металле. Эта размытость не растет с увеличением содержания водорода и даже несколько уменьшается при более высоких содержаниях водорода. Установлено, что электролитический марганец не может быть получен с содержанием водорода более чем 615 см3 на 100 г, что соответствует двум атомам водорода на элементарную ячейку α-марганца. При равномерном распределении водорода в металле можно ожидать равной степени искажения элементарных решеток и дифракционная картина должна содержать четкие линии.

В1. Установите соответствие между формулой вещества и значением степени окисления серы в нём:
ФОРМУЛА ВЕЩЕСТВА СТЕПЕНЬ ОКИСЛЕНИЯ
A) NaHSO3 1) -2
Б) SO3 2) -1
B) MgS 3) 0
Г) CaSO3 4) +4 5) +6
В2. Установите соответствие между названием вещества и видом связи между атомами в нём: НАЗВАНИЕ ВЕЩЕСТВА ВИД СВЯЗИ
А) фторид кальция 1) ковалентная неполярная
Б) серебро 2) ковалентная полярная
В) оксид углерода (IV) 3) ионная
Г) хлор 4) металлическая
В3. Установите соответствие между электронной конфигурацией внешнего энергетического уровня атомов химического элемента и формулой его летучего водородного соединения:
ЭЛЕКТРОННАЯ ФОРМУЛА ФОРМУЛА ЛЕТУЧЕГО ВОДОРОДНОГО СОЕДИНЕНИЯ
А) ns2np2 1) HR
Б) ns2np3 2) RH3
В) ns2np4 3) H2R
Г) ns2np5 4) RH4
С1. Какая масса осадка образуется при пропускании 448л углекислого газа (н.у.) через избыток раствора гидроксида кальция?

1. Формула высшего оксида марганца отвечает общей формуле:

1) ЭО3
2) Э2О7
3) Э2О3
4)ЭО2
2. Валентность мышьяка в летучем водородном соединении:
1) II
2) III
3) V
4) I

3. Наиболее ярко металлические свойства выражены у элемента:
1) II группы, побочной подгруппы, 5 периода.
2) II группы, главной подгруппы, 2 периода
2) I группы, главной подгруппы, 2 периода
4) I группы, главной подгруппы, 3 периода.

4. Ряд, в котором элементы расположены в порядке возрастания электроотрицательности это:
1) AS,N,P
2) P,Si.Al
3)Te, Sc, S
4) F, Cl,Br

электронная формула внешнего электронного слоя атома химического элемента....3s23p5.определите этот элемент,составьте формулы его высшего оксида,летучего

водородного соединения и гидроксида.какими свойствами(основными,кислотными или амфотерными)они обладают?составьте его графическую формулу и определите валентные возможности атома этого химического элемента

Помогите пожалуйста расписать элемент,по плану:) Sr

1)название химического элемента,его символ
2)Относительная атомная масса(округлите до целого числа)
3)порядковый номер
4)заряд ядра атома
5)число протонов и нейтронов в ядре атома
6)общее число электронов
7)номер периода, в котором расположен элемент
8)номер группы и подгруппа(главная и побочная),в которой расположен элемент
9)схема строения атома(распределение электронов по электронным слоям)
10) электронная конфигурация атома
11)химические свойства простого вещества(металл или неметалл),сравнение характера свойств с соседями по подгруппе и периоду
12)максимальная степень окисления
13)формула высшего оксида и его характер(кислотный,амфотерный,основной),характерные реакции
14) формула высшего гидроксида и его характер (кислотный,амфотерный,основной),характерные реакции
15)минимальная степень окисления
16)формула летучего водородного соединения

1. Ядро атома криптона-80, 80 Kr, содержит: а) 80р и 36n; б) 36p u 44e; в) 36p u 80n; г) 36p u 44n

2. Три частицы: Ne0, Na+ u F- - имеют одинаковое:

А) число протонов;

Б) число нейтронов;

В) массовое число;

Г) число электронов.

3. Наибольший радиус имеет ион:

4. Из приведенных ниже электронных формул выберите ту, которая соответствует d-элементу 4-го периода: а) ..3s23p64s23d5;

Б)..3s23p64s2;

В)...3s23p64s23d104s2;

Г)..3s23p64s23d104p65s24d1.

5. Электронная формула атома 5s24d105p3. Формула его водородного соединения:

6. Из приведенных ниже электронных формул выберите ту, которая соответствует элементу, образующему высший оксид состава R2O7:

В)..3s23p64s23d5;

Г)..4s23d104p2.

7. Ряд элементов, расположенных в порядке усиления неметаллических свойств:

А) Mg, Si, Al;

8. Наибольшим сходством физических и химических свойств обладают простые вещества, образованные химическими элементами:

9. Характер оксидов в ряду P2O5 – SiO2 – Al2O3 – MgO изменяется:

А) от основного к кислотному;

Б) от кислотного к основному;

В) от основного к амфотерному;

Г) от амфотерного к кислотному.

10. Характер высших гидроксидов, образованных элементами главной подгруппы 2 группы, с увеличением порядкового номера изменяется:

А) от кислотного к амфотерному;

Б) от основного к кислотному;

В) от амфотерного к основному;

Г) от кислотного к основному.

Общий обзор

Марганец - элемент VIIB подгруппы IV-го периода. Электронное строение атома 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 , наиболее характерные степени окисления в соединениях - от +2 до +7.

Марганец принадлежит к довольно распространенным элементам, составляя 0,1 % (массовая доля) земной коры. В природе встречается тoлько в виде соединений, основные минералы - пиролюзит (диоксид марганца MnO 2 .), гаусканит Mn 3 O 4 и браунит Mn 2 O 3 .

Физические свойства

Марганец - серебристо-белый твердый хрупкий металл. Его плотность 7,44 г/см 3 , температура плавления 1245 o С. Известны четыре кристаллические модификации марганца.

Химические свойства

Марганец – активный металл, ряду напряжений он находится между алюминием и цинком. На воздухе марганец покрывается тонкой оксидной пленкой, предохраняющей его от дальнейшего окисления даже при нагревании. В мелкораздробленном состоянии марганец окисляется легко.

3Mn + 2O 2 = Mn 3 O 4 – при прокаливаии на воздухе

Вода при комнатной температуре действует на марганец очень медленно, при нагревании - быстрее:

Mn + H 2 O = Mn(OH) 2 + H 2

Он растворяется в разбавленных соляной и азотной кислотах, а также в горячей серной кислоте (в холодной H 2 SO 4 он практически нерастворим):

Mn + 2HCl = MnCl 2 + H 2 Mn + H 2 SO 4 = MnSO 4 + H 2

Получение

Марганец получают:

1. электролизом раствора MnSО 4 . При электролитическом методе руду восстанавливают, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу.

2. восстановлением из его оксидов кремнием в электрических печах.

Применение

Марганец применяется:

1. в производстве легированных сталей. Марганцовистая сталь, содержащая до 15 % марганца, обладает высокими твердостью и прочностью.

2. марганец входит в состав ряда сплавов на основе магния; он повышает их стойкость против коррозии.

Оксиды магранца

Марганец образует четыре простых оксида - MnO , Mn 2 O 3 , MnO 2 и Mn 2 O 7 и смешанный оксид Mn 3 O 4 . Первые два оксида обладают основными свойствами, диоксид марганца MnO 2 амфотерен, а высший оксид Mn 2 O 7 является ангидридом марганцовой кислоты HMnO 4 . Известны также производные марганца (IV), но соответствующий оксид MnO 3 не получен.

Соединения марганца (II)

Степени окисления +2 соответствуют оксид марганца (II) MnO , гидроксид марганца Mn(OH) 2 и соли марганца (II).

Оксид марганца(II) получается в виде зеленого порошка при восстановлении других оксидов марганца водородом:

MnO 2 + H 2 = MnO + H 2 O

или при термическом разложении оксалата или карбоната марганца без доступа воздуха:

MnC 2 O 4 = MnO + CO + CO 2 MnCO 3 = MnO + CO 2

При действии щелочей на растворы солей марганца (II) выпадает белый осадок гидроксидa марганца Mn(OH)2:

MnCl 2 + NaOH = Mn(OH) 2 + 2NaCl

На воздухе он быстро темнеет, окисляясь в бурый гидроксид марганца(IV) Mn(OH)4:

2Mn(OH) 2 + O 2 + 2H 2 O =2 Mn(OH) 4

Оксид и гидроксид марганца (II) проявляют основные свойства, легко растворяются в кислотах:

Mn(OH)2 + 2HCl = MnCl 2 + 2H 2 O

Соли при марганца (II) образуются при растворении марганца в разбавленных кислотах:

Mn + H 2 SO 4 = MnSO 4 + H 2 - при нагревании

или при действии кислот на различные природные соединения марганца, например:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

В твердом виде соли марганца (II) розового цвета, растворы этих солей почти бесцветны.

При взаимодействии с окислителями все соединения марганца (II) проявляют восстановительные свойства.

Соединения марганца (IV)

Самым устойчивым соединением марганца (IV) является темно-бурый диоксид марганца MnO 2 . Он легко образуется как при окислении низших, так и при восстановлении высших соединений марганца.

MnO 2 - амфотерный оксид, но и кислотные, и основные свойства выражены у него очень слабо.

В кислой среде диоксид марганца –сильный окислитель. При нагревании сконцентрированными кислотами идут реакции:

2MnO 2 + 2H 2 SO 4 = 2MnSO 4 + O 2 + 2H 2 O MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

причем на первой стадии во второй реакции сначала образуется неустойчивый хлорид марганца (IV), который затем распадается:

MnCl 4 = MnCl 2 + Cl 2

При сплавлении MnO 2 со щелочами или основными оксидами получают манганиты, например:

MnO 2 +2KOH = K 2 MnO 3 + H 2 O

При взаимодействии MnO 2 с концентрированной серной кислотой образуется сульфат марганца MnSO 4 и выделяется кислород:

2Mn(OH) 4 + 2H2SO 4 = 2MnSO 4 + O 2 + 6H 2 O

Взаимодействие MnO 2 с более сильными окислителями приводит к образованию соединений марганца (VI) и (VII), например при сплавлении с хлоратом калия образуется манганат калия:

3MnO 2 + KClO 3 + 6KOH = 3K2MnO 4 + KCl + 3H 2 O

а при действии диоксида полония в присутствии азотной кислоты – марганцевая кислота:

2MnO 2 + 3PoO 2 + 6HNO 3 = 2HMnO 4 + 3Po(NO 3) 2 + 2H 2 O

Применение MnO 2

В качестве окислителя MnO 2 применяют при получении хлора из соляной кислоты и в сухих гальванических элементах.

Соединения марганца(VI) и (VII)

При сплавлении диоксида марганца с карбонатом и нитратом калия получается зеленый сплав, из которого можно выделить темно-зеленые кристаллы манганата калия K 2 MnO 4 - соли очень нестойкой марганцовистой кислоты H 2 MnO 4 :

MnO 2 + KNO 3 + K 2 CO 3 = K 2 MnO 4 + KNO 2 + CO 2

в водном растворе манганаты самопроизвольно превращаются в соли марганцовой кислоты HMnO4 (перманганаты) с одновременным образованием диоксида марганца:

3K 2 MnO 4 + H 2 O = 2KMnO 4 + MnO 2 + 4KOH

при этом цвет раствора меняется с зеленого на малиновый и образуется темно-бурый осадок. В присутствии щелочи манганаты устойчивы, в кислой среде переход манганата в перманганат происходит очень быстро.

При действии сильных окислителей (например, хлора) на раствор манганата последний полностью превращается в перманганат:

2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl

Перманганат калия KMnO 4 - наиболее известная соль марганцовой кислоты. Представляет собой темно-фиолетовые кристаллы, умеренно растворимые в воде.Как и все соединения марганца (VII), перманганат калия - сильный окислитель. Он легко окисляет многие органические вещества, превращает соли железа(II) в соли железа (III), сернистую кислоту окисляет в серную, из соляной кислоты выделяет хлор и т. д.

В окислительно-восстановительных реакциях KMnO 4 (ион MnO 4 - )может восстанавливаться в различной степени. В зависимости от рН среды продукт восстановления может представлять собою ион Mn 2+ (в кислой среде), MnO 2 (в нейтральной или в слабо щелочной среде) или ион MnO4 2- (в сильно щелочной среде), например:

KMnO4 + KNO 2 + KOH = K 2 MnO 4 + KNO 3 + H 2 O - в сильнощелочной среде 2KMnO 4 + 3KNO 2 + H 2 O = 2MnO 2 + 3KNO 3 + 2KOH – в нейтральной или слабощелочной 2KMnO 4 + 5KNO 2 + 3H 2 SO 4 = 2MnSO 4 + K 2 SO 4 + 5KNO 3 + 3H 2 O – в кислой среде

При нагревании в сухом виде перманганат калия уже при температуре около 200 o С разлагается согласно уравнению:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2

Соответствующая перманганатам свободная марганцовая кислота HMnO 4 в безводном состоянии не получена и известна только в растворе. Концентрацию ее раствора можно довести до 20%. HMnO 4 - очень сильная кислота, в водном растворе полностью диссоциированная на ионы.

Оксид марганца (VII), или марганцовый ангидрид, Mn 2 O 7 может быть получен действием концентрированной серной кислоты на перманганат калия: 2KMnO 4 + H 2 SO 4 = Mn 2 O 7 + K 2 SO 4 + H 2 O

Марганцовый ангидрид - зеленовато-бурая маслянистая жидкость. Очень неустойчив: при нагревании или при соприкосновении с горючими веществами он со взрывом разлагается на диоксид марганца и кислород.

Как энергичный окислитель перманганат калия широко применяют в химических лабораториях и производствах, он служит также дезинфицирующим средством, Реакцией термического разложения перманганата калия пользуются в лаборатории для получения кислорода.


] интерпретировал ее как 0-0 полосу перехода, связанного с основным состоянием молекулы. К тому же электронному переходу он отнес более слабые полосы 620нм (0-1) и 520нм (1-0). Невин [ 42NEV, 45NEV ] выполнил анализ вращательной и тонкой структуры полос 568 и 620нм (5677 и 6237Å) и определил тип электронного перехода 7 Π - 7 Σ. В последующих работах [ 48NEV/DOY, 52NEV/CON, 57HAY/MCC ] выполнен анализ вращательной и тонкой структуры еще нескольких полос перехода 7 Π - 7 Σ (A 7 Π - X 7 Σ +) MnH и MnD.

Методы лазерной спектроскопии высокого разрешения позволили проанализировать сверхтонкую структуру линий в 0-0 полосе A 7 Π - X 7 Σ + , обусловленную наличием ядерного спина у изотопа марганца 55 Mn (I=2.5) и протона 1 H (I=1/2) [ 90VAR/FIE, 91VAR/FIE, 92VAR/GRA, 2007GEN/STE ].

Вращательная и тонкая структура нескольких полос MnH и MnD в ближней ИК и фиолетовой области спектра была проанализирована в работах [ 88BAL, 90BAL/LAU, 92BAL/LIN ]. Установлено, что полосы принадлежат четырем квинтетным переходам с общим нижним электронным состоянием: b 5 Π i - a 5 Σ + , c 5 Σ + - a 5 Σ + , d 5 Π i - a 5 Σ + и e 5 Σ + - a 5 Σ + .

Колебательно-вращательный спектр MnH и MnD получен в работах . Выполнен анализ вращательной и тонкой структуры колебательных переходов (1-0), (2-1), (3-2) в основном электронном состоянии X 7 Σ + .

Спектры MnH и MnD в низкотемпературной матрице исследовались в работах [ 78VAN/DEV, 86VAN/GAR, 86VAN/GAR2, 2003WAN/AND ]. Колебательные частоты MnH и MnD в твердом аргоне [ 78VAN/DEV, 2003WAN/AND ], неоне и водороде [ 2003WAN/AND ] близки к величине ΔG 1/2 в газовой фазе. Величина матричного сдвига (максимальная в аргоне для MnH ~ 11 см ‑1) типична для молекул с относительно ионным характером связи.

Спектр электронного парамагнитного резонанса, полученный в [ 78VAN/DEV ], подтвердил симметрию основного состояния 7 Σ. Параметры сверхтонкой структуры, полученные в [ 78VAN/DEV ], уточнены в [ 86VAN/GAR, 86VAN/GAR2 ] при анализе спектра электронно-ядерного двойного резонанса.

Фотоэлектронный спектр анионов MnH - и MnD - получен в работе [ 83STE/FEI ]. В спектре идентифицированы переходы, как в основное состояние нейтральной молекулы, так и возбужденные с энергией T 0 = 1725±50 см ‑1 и 11320±220 см ‑1 . Для первого возбужденного состояния наблюдалась колебательная прогрессия от v = 0 до v = 3, определены колебательные постоянные w e = 1720±55 см ‑1 и w e x e = 70±25 см ‑1 . Симметрия возбужденных состояний не определена, сделаны лишь предположения на основе теоретических представлений [ 83STE/FEI, 87MIL/FEI ]. Данные, полученные позже из электронного спектра [ 88BAL, 90BAL/LAU ], и результаты теоретического расчета [ 89LAN/BAU ] однозначно показали, что возбужденные состояния в фотоэлектронном спектре – это a 5 Σ + и b 5 Π i .

Ab initio расчеты MnH выполнены различными методами в работах [ 73BAG/SCH, 75BLI/KUN, 81DAS, 83WAL/BAU, 86CHO/LAN, 89LAN/BAU, 96FUJ/IWA, 2003WAN/AND, 2004RIN/TEL, 2005BAL/PET, 2006FUR/PER, 2006KOS/MAT ]. Во всех работах получены параметры основного состояния, которые достаточно хорошо, по мнению авторов, согласуются с экспериментальными данными.

В расчет термодинамических функций были включены: а) основное состояние X 7 Σ + ; б) экспериментально наблюдавшиеся возбужденные состояния; в) состояния d 5 Δ и B 7 Σ + , рассчитанные в [ 89LAN/BAU ]; г) синтетические (оцененные) состояния, учитывающие прочие связанные состояния молекулы до 40000 см -1 .

Колебательные постоянные основного состояния MnH и MnD получены в [ 52NEV/CON, 57HAY/MCC ] и с очень высокой точностью в [ 89URB/JON, 91URB/JON, 2005GOR/APP ]. В табл. Mn.4 представлены значения из [ 2005GOR/APP ].

Вращательные постоянные основного состояния MnH и MnD получены в работах [ 42NEV, 45NEV, 48NEV/DOY, 52NEV/CON, 57HAY/MCC, 74PAC, 75KOV/PAC, 89URB/JON, 91URB/JON, 92VAR/GRA, 2005GOR/APP, 2007GEN/STE ]. Различия в значениях B 0 лежат в пределах 0.001 см ‑1 , B e – в пределах 0.002 см ‑1 . Они обусловлены разной точностью измерений и разными методами обработки данных. В табл. Mn.4 представлены значения из [ 2005GOR/APP ].

Энергии наблюдавшихся возбужденных состояний получены следующим образом. Для состояния a 5 Σ + принято значение T 0 из [ 83STE/FEI ] (см. выше по тексту). Для других квинтетных состояний в табл. Mn.4 приведены энергии, полученные прибавлением к T 0 a 5 Σ + величин T = 9429.973 см ‑1 и T = 11839.62 см ‑1 [ 90BAL/LAU ], T 0 = 20880.56 см ‑1 и T 0 = 22331.25 см ‑1 [ 92BAL/LIN ]. Для состояния A 7 Π приведено значение T e из [ 84ХЬЮ/ГЕР ].

Энергия состояния d 5 D , рассчитанная в [ 89LAN/BAU ], уменьшена на величину 2000 см ‑1 , что соответствует разности между экспериментальной и расчетной энергией состояния b 5 Π i . Энергия B 7 Σ + оценена прибавлением к экспериментальной энергии A 7 Π разности энергий этих состояний на графике потенциальных кривых [ 89LAN/BAU ].

Колебательные и вращательные константы возбужденных состояний MnH в расчетах термодинамических функций не использовались и приведены в таблице Mn.4 для справки. Колебательные константы приведены по данным работ [ 83STE/FEI ] (a 5 Σ +), [ 90BAL/LAU ] (c 5 Σ +), [ 92BAL/LIN ] (d 5 Π i , e 5 Σ +), [ 84ХЬЮ/ГЕР ] (A 7 Π). Вращательные константы приведены по данным работ [ 90BAL/LAU ] (b 5 Π i , c 5 Σ +), [ 92BAL/LIN ] (a 5 Σ + , d 5 Π i , e 5 Σ +), [ 92VAR/GRA ] (B 0 и D 0 A 7 Π) и [ 84ХЬЮ/ГЕР ] (a 1 A 7 Π).

Для оценки энергий не наблюдавшихся электронных состояний была использована ионная модель Mn + H - . Согласно модели, ниже 20000 см ‑1 молекула не имеет других состояний, кроме тех, что уже учтены, т.е. тех состояний, которые наблюдались в эксперименте и/или получены в расчете [ 89LAN/BAU ]. Выше 20000 см ‑1 модель предсказывает большое количество дополнительных электронных состояний, принадлежащих трем ионным конфигурациям: Mn + (3d 5 4s)H - , Mn + (3d 5 4p)H - и Mn + (3d 6)H - . Эти состояния хорошо сопоставляются с состояниями, рассчитанными в [ 2006KOS/MAT ]. Энергии состояний, оцененные по модели, отчасти точнее, поскольку учитывают экспериментальные данные. В связи с большим количеством оцененных состояний выше 20000 см ‑1 , они объединены в синтетические состояния при нескольких уровнях энергии (см. примечание табл.Mn.4).

Термодинамические функции MnH(г) были вычислены по уравнениям (1.3) - (1.6) , (1.9) , (1.10) , (1.93) - (1.95) . Значения Q вн и ее производных рассчитывались по уравнениям (1.90) - (1.92) с учетом четырнадцати возбужденных состояний в предположении, что Q кол.вр (i ) = (p i /p X)Q кол.вр (X ) . Колебательно-вращательная статистическая сумма состояния X 7 Σ + и ее производные вычислялись по уравнениям (1.70) - (1.75) непосредственным суммированием по уровням энергии. В расчетах учитывались все уровни энергии со значениями J < J max ,v , где J max ,v находилось из условий (1.81) . Колебательно-вращательные уровни состояния X 7 Σ + вычислялись по уравнениям (1.65) , значения коэффициентов Y kl в этих уравнениях, были рассчитаны по соотношениям (1.66) для изотопической модификации, соответствующей естественной смеси изотопов водорода из молекулярных постоянных 55 Mn 1 H, приведенных в табл. Mn.4 . Значения коэффициентов Y kl , а также величины v max и J lim приведены в табл. Mn.5 .

Основные погрешности рассчитанных термодинамических функций MnH(г) обусловлены методом расчета. Погрешности в значениях Φº(T ) при T = 298.15, 1000, 3000 и 6000 К оцениваются в 0.16, 0.4, 1.1 и 2.3 Дж× K ‑1 × моль ‑1 , соответственно.

Термодинамические функции MnH(г) ранее вычислялись без учета возбужденных состояний до 5000 К в работе [ 74SCH ] и с учетом возбужденных состояний до 6000 К в [

D ° 0 (MnH) = 140 ± 15 кДж× моль ‑1 = 11700 ± 1250 см ‑1 .

Важнейшие соединения марганца - это производные двух-, четырех- и семивалентного марганца. Из производных однова­лентного марганца известны только цианосоли M 5 (где М - катион щелочного металла). Получают эти соли восстанов­лением цианидного комплекса Мп(П) электрохимическим спосо­бом или амальгамой натрия . В жидком аммиаке воз­можно дальнейшее восстановление цианидного комплекса Мп(I), приводящее к образованию соединения M 6 , где марга­нец имеет нулевую валентность. Получены комплексы Мп(I) при взаимодействии Mn(CO) 5 SCN с нейтральными лигандами - ами­нами, фосфинами, арсинами.

Соли Мп(П) окрашены в розовый цвет и большей частью хо­рошо растворимы в воде, особенно хлорид, нитрат, сульфат, аце­тат и роданид. Из малорастворимых соединений следует назвать сульфид, фосфат и карбонат. В нейтральных или слабокислых водных растворах Мп(П) образует комплексный ион [Мп(Н 2 0) в ] 2 + , а в более кислых растворах - [Мп(Н 2 0) 4 ] 2+ . Соли Mn(III) интенсивно окрашены и весьма склонны к образованию комплексных соединений. Они малоустойчивы и легко подверга­ются гидролизу. Соединения Mn(IV) неустойчивы. Можно привести лишь несколько примеров устойчивых соединений Mn(IV), в числе которых Mn02, MnF 4 и Mn(SO 4) 2 . В кислых рас­творах ион Mn(IV) восстанавливается, в присутствии же сильных окислителей - окисляется до перманганат-иона. Из производных Mn(V) известны лишь соли - гипоманганаты некоторых наиболее активных металлов - Li, Na, К, Sr и Ва. Na 3 Mn0 4 получают выдерживанием при 800° С смеси Мп0 2 и NaOH (1: 3) в атмосфере кислорода или взаимодействием Мп 2 0 3 с NaOH в токе кислорода. Безводная соль имеет темно-зеленую окраску, кри­сталлогидраты Na 3 Mn0 4 *7H 2 0 - синюю, a Na 3 Mn0 4 *10H 2 0 - небесно-голубую. Соль LiMn0 3 нерастворима в воде, а соли NaMn0 3 и КМп0 3 хорошо растворимы, но частично гидролизуются.

В твердом состоянии известны манганаты(VI) щелочных метал­лов, которые образуют темно-зеленые, почти черные кристаллы. Манганат калия К 2 Мп0 4 кристаллизуется без воды, а для манганата натрия известны кристаллогидраты с 4, 6, 10 молекулами воды. Манганаты щелочных металлов легко растворяются в раз­бавленных растворах щелочей, такие растворы окрашены в зеле­ный цвет. Чистая вода и слабые кислоты разлагают их по реак­ции:

3MnO 4 2- +4Н + ↔ 2 MnO 4 - +Мп0 2 + 2Н 2 0.

По-видимому этот процесс обусловлен тем, что свободная мар­ганцовистая кислота Н 2 Мп0 4 неустойчива, однако есть указание на устойчивость ее в диэтиловом эфире. Наиболее важные соеди­нения Mn(VII) - перманганаты ММп0 4 (где М - катион щелоч­ного металла). КМп0 4 получают электролитическим окислением К 2 Мп0 4 . В табл. 8 приведена растворимость перманганатов щелоч­ных металлов в воде.

Таблица 8

Растворимость перманганатов щелочных металлов в воде

Перманганат Са(Мn0 4) 2 * 5Н 2 0 легко растворим в воде и применя­ется для стерилизации питьевой воды.

Окислы. Известны следующие окислы марганца: МпО - моно­окись или закись марганца; Мп 2 0 3 - полуторная окись марганца; Мп0 2 - двуокись марганца; Мп0 3 - трехокись марганца или марганцовистый ангидрид; Мп 2 0 7 - семиокись марганца или мар­ганцовый ангидрид; Мп 3 0 4 - промежуточный окисел марганца, называемый красной окисью марганца. Все окислы марганца за исключением МпО при действии НСl выделяют хлор. Конц. H 2 S0 4 при нагревании растворяет окислы марганца с выделением кислорода и образованием MnS0 4 .

Окись Мп(П) - зеленый порошок с оттенками от серо-зеленого до темно-зеленого. Получают МпО при прокаливании карбоната или оксалата марганца в атмосфере водорода или азота, а также при восстановлении высших окислов гидразином, водородом или окисью углерода . Гидроокись Мп(II) выделяется из растворов Мп(II) в виде студенистого белого осадка при действии гидроокисей щелочных металлов. Мп(ОН) 2 устойчива на возду­хе.

Черная Мп 2 0 3 образуется при нагревании Мп0 2 на воздухе до 550-900° С или при прокаливании солей Мп(II) в токе кисло­рода или воздуха. При нагревании Мп 2 0 3 в токе водорода при тем­пературе около 230° С происходит сначала переход в Мп 3 0 4 , а при температуре выше 300° С - восстановление до моноокиси зеленого цвета. При растворении Мп 2 0 3 в кислотах образуются либо соли Мп(Ш), либо соли Мп(П) и Мп0 2 (в зависимости от природы кислоты и температуры).

Гидрат окиси Мп(III)-Мп 2 0 3* Н 2 0 или метагидроокись марган­ца МпО(ОН) встречается в природе в виде манганита. Мп0 2 - твердое вещество темно-серого или почти черного цвета-получают осторожным прокаливанием Mn(N0 3) 2 на воздухе или восстановлением перманганата калия в щелочной среде. В воде Мп0 2 нерастворима. При прокаливании выше 530° С она переходит в Мn 3 0 4 ; Мп0 2 легко вступает в реакции с сернистой кислотой с образованием дитионата марганца.

МпО 2 + 2H 2 S0 3 = MnS 2 O 6 + 2Н 2 0.

Холодная конц. H 2 S0 4 не действует на Мп0 2 ; при нагревании до 110° С образуется Mn 2 (S0 4) 3 , а при более высокой температуре Mn 2 (S0 4) 3 переходит в MnS0 4 . Гидрат двуокиси марганца полу­чают окислением солей Мп(П) или восстановлением в щелоч­ных растворах манганатов или перманганатов. МпО(ОН) 2 или Н 2 Мп0 3 - черный или черно-коричневый порошок, практически нерастворимый в воде. MпО из смеси МпО, Мп 2 0 3 и Мп0 2 может быть отделена селективным растворением 6N раствором (NH 4) 2 S0 4 . МпО хорошо растворяется также в растворе NH 4 C1. Мп 2 0 3 может быть отделена от Мп0 2 с помощью раствора метафосфорной кислоты в конц. H 2 S0 4 . Mn0 2 в данном растворе не растворяется даже при длительном нагревании. При сплавлении Мп0 2 со щелочами в присутствии окислителей образуются соли марганцовистой кислоты Н 2 Мп0 4 -манганаты. Выделяющаяся при подкислении растворов манганатов свободная Н 2 Мп0 4 крайне неустойчива и распадается по схеме

ЗН 2 Мп0 4 = 2НМп0 4 + Мп0 2 + 2Н 2 0.

Мп 2 0 7 получают действием конц. H 2 S0 4 на КМп0 4 . Это тяже­лое, блестящее, зеленовато-бурое маслянистое вещество, устой­чивое при обыкновенной температуре, а при нагревании разла­гающееся со взрывом. В большом количестве холодной воды Мп 2 0 7 растворяется с образованием НМп0 4 (до 20%-ной ее кон­центрации). Темно-фиолетовые гигроскопические кристаллы НМп0 4 , а также НМп0 4* 2Н 2 0 получают добавлением 0,3 М H 2 S0 4 к 0,3 М раствору Ва(Мп0 4) 2 при температуре <1° С с по­следующим удалением избытка воды и охлаждением смеси до - 75° С . При этой температуре НМп0 4 устойчива, выше +3° С она быстро разлагается. Кристаллическая НМп0 4 *2Н 2 0 устойчива при комнатной температуре в течение 10-30 мин.

Фториды. MnF 2 получают взаимодействием МпС0 3 с фтористо­водородной кислотой, фторид растворим в разбавленной HF, конц. HCl и HN0 3 . Растворимость его в воде при 20° С равна 1,06 г/100 г. MnF 2 образует малоустойчивый тетрагидрат MnF 2* 4Н 2 0, легко разлагающийся аммиакат 3MnF 2* 2NH 3 , а с фтори­дами щелочных металлов - двойные соли MF*MnF 2 (где М -катион щелочного металла).

MnJ 3 - единственный известный галогенид Мп(Ш) - твер­дое вещество винно-красного цвета, образуется при действии фтора на MnJ 2 при 250° С, при растворении Мп 2 0 3 в HF или при взаимо­действии КМн0 4 с солью Мп(П) в присутствии HF. Кристалли­зуется в виде MnF 3 * 2H 2 0. Водой MnF 3 разлагается по реакции

2MnF 3 + 2Н 2 0 = Mn0 2 +MnF 2 + 4HF.

С фторидами щелочных металлов MnF 3 образует двойные соли MF*MnF 3 и 2MF*MnF 3 (где М - катион щелочного металла). Из фторидных соединений Mn(IV) известны лишь двойные соли 2MF*MnF 4 и MF*MnF 4 , представляющие собой золотисто-желтые прозрачные табличатые кристаллы. Вода разлагает 2KF*MnF 4 с выделением Mn0 2* aq.

Хлориды. Безводный МпС1 2 получают действием сухого НСl на окись, карбонат или металлический марганец, а также при горении металлического марганца в токе хлора. Хлорид Мп(II) кристаллизуется в виде МпС1 2* 4Н 2 0, существующего в двух мо­дификациях. Известны также кристаллогидраты МпС1 2* 2Н 2 0, МпС1 2* 5Н 2 0, ЗМпС1 2 *5Н 2 О, МпС1 2* 6Н 2 0. МпС1 2 хорошо раство­рим в воде (72,3 г/100 г при 25° С) и в абсолютном спирте. В токе кислорода МпС1 2 переходит в Мп 2 0 3 , а в токе НС1 при 1190° С улетучивается. С хлоридами щелочных металлов МпС1 2

образует двойные соли МСl*МпС1 2 . Получены следующие ос­новные соли: MnOHCl, Mn 2 (OH) 3 Cl, Мп 3 (ОН) 6 Сl. Установлено существование хлоридных комплексов [Мп(Н 2 0) 5 Сl] + , [Мп(Н 2 0) 2 С1 4 ] 2- и других. Состав комплексов зависит от концентрации Сl - в растворе, так при [Сl - ]>0,3 М образуется комплекс [Мп(Н 2 0) 9 С1]+, при [Сl - ]>5 М ─ [Мп(Н 2 0) 2 С1 4 ] 2- . Константы устойчивости [МпС1] + , [МпС1 2 ] и [МпС1 3 ] - соответственно равны 3,85 0,15; 1,80  0,1 и 0,44  0,08. МпС1 3 неизвестен, но получены двойные соли М 2 МпС1 6 .

К 2 МпС1 5 получают по реакции:

КМп0 4 + 8НС1 + КС1 = К 2 МпСl 5 + 2С1 2 + 4Н 2 0.

МпС1 4 , по-видимому, образуется сначала при растворении пиролюзита в конц. НСl, однако он тотчас же разлагается с от­щеплением хлора. Более устойчивы соединения М 2 МпС1 6 .

К 2 МпС1 6 получают добавлением растворов перманганата каль­ция и хлорида калия к сильно охлажденной 40%-ной НС1.

Са (Мn0 4) 2 + 16НС1 + 4КС1 = 2К 2 МпС1 5 + СаС1 2 + 8Н 2 0 + ЗСl 2 .

Это же соединение получают восстановлением КМп0 4 диэтиловым эфиром в конц. НС1. Известны хлорокиси МпОС1 3 , Мп0 2 С1 2 ,

Бромиды. МпВг 2 по внешнему виду и свойствам очень похож на МпС1 2 . Однако способность к образованию двойных солей у бромидов значительно ниже, чем у хлоридов. МпВг 2 образует кристаллогидраты с одной, двумя, четырьмя или шестью моле­кулами воды. Растворимость МnВг 2* 4Н 2 0 в воде при 0° С равна 127 г/100 г . МпВг 3 и его двойные соли неизвестны.

Иодиды. MnJ 2 также похож на МпС1 2 , только способность к образованию двойных солей у него совсем отсутствует, MnJ 2 образует кристаллогидрат с одной, двумя, четырьмя, шестью, восемью или девятью молекулами воды. При взаимодействии MnJ 2 с цианидами щелочных металлов образуются двойные соли MnJ 2 *3MCN. MnJ 3 и его двойные соли не получены.

Нитраты. Mn(N0 3) 2 получают действием HN0 3 на МпС0 3 . Кристаллизуется Mn(N0 3) 2 с одной, тремя или шестью молекула­ми воды. Mn(N0 3) 2* 6H 2 0 - слабо-розовые игольчатые призмы, легко растворимые в воде и спирте. При 160-200° С разлагается с образованием Мп0 2 . Растворимость Mn(N0 3) 2 в воде при 18° С равна 134 г/100 г. Безводная соль может присоединять до 9 молекул аммиака. Mn(N0 3) 2 легко образует двойные соли с ни­тратами РЗЭ путем фракционированной кристаллизации.

Сульфаты. MnS0 4 , одно из наиболее устойчивых соединений Mn(II),образуется при упаривании с серной кислотой почти всех соединений Мп(П). Кристаллизуется MnS0 4 в зависимости от условий с одной, четырьмя, пятью или семью молекулами воды. MnS0 4* 5H 2 0 - красноватые кристаллы, довольно легко растворимые в воде и нерастворимые в спирте. Безводная MnS0 4 - белая рассыпчатая хрупкая кристаллическая масса. С сульфатами одно­валентных металлов и аммония MnS0 4 легко образует двойные соли M 2 S0 4 *MnSO 4 . Установлено образование комплексов Мп(II) с S0 4 2 - состава , 2 - и 4 -, константы устойчивости которых соответственно равны 8,5; 9; 9,3 . Mn 2 (S0 4) 3 получают при взаимодействии окиси или гидроокиси Мп(III) с разбавленной H 2 S0 4 . Кристаллизуется в виде Mn 2 (S0 4) 3 H 2 S0 4 4H 2 0. При сильном нагревании она переходит в Mn 2 (S0 4) 3 , которая в высшей степени гигроскопична и растворя­ется в H 2 S0 4 . С сульфатами щелочных металлов Mn 2 (S0 4) 3 образует два ряда двойных солей: M 2 S0 4 *Mn 2 (S0 4) 3 и M, а также соли типа квасцов. Наиболее устойчивы цезиевые квасцы CsMn(S0 4) 2 *12H 2 0. Существуют также двойные соли Мn 2 (S0 4) 3 с сульфатами.Fe(III), Cr(III), Al(III).

Mn(S0 4) 2 получают при окислении MnS0 4 перманганатом калия при 50-60° С. Mn(S0 4) 2 растворяется в H 2 S0 4 (50-80%), обра­зуя темно-коричневый раствор. В разбавленной серной кис­лоте и воде гидролизуется с выделением МnО(ОН) 2 .

Сульфиты . MnSO 3 получают взаимодействием МпС0 3 с водой, содержащей S0 2 . Мало растворим в воде. Ниже 70° С MnS0 3 кристаллизуется в виде тригидрата, а при более высокой темпе­ратуре - в виде моногидрата. С сульфитами щелочных металлов MnS0 3 образует двойные соли M 2 S0 3 MnS0 3 .

Сульфиды . MnS получают действием сернистого аммония или растворов сульфидов щелочных металлов на соли Мп(II). При длительном стоянии или нагревании осадок темного цвета пере­ходит в более устойчивую модификацию зеленого цвета. Известны три модификации MnS. -MnS - зеленые кристаллы куби­ческой сингонии (алабандин), -MnS - красные кристаллы ку­бической сингонии, -MnS - красные кристаллы гексагональной сингонии. MnS относится к наиболее растворимым сульфидам, ибо с изменением электронной структуры катионов изменяется растворимость их сульфидов в воде:

Фосфаты . Из нейтральных растворов солей Мп(II) при избытке фосфата натрия выпадает кристаллогидрат ортофосфата марганца Мп 3 (Р0 4) 2* 7Н 2 0 в виде рыхлого белого осадка. В других условиях можно получить другие фосфаты: ди- и метафосфаты, а также кис­лые фосфаты. При добавлении хлорида и фосфата аммония и небольшого количества аммиака к раствору солей Мп(П) обра­зуется прекрасно кристаллизующаяся двойная соль - марганец - аммоний-фосфат NH 4 MnP0 4 *H 2 0. Эту реакцию используют в гра­виметрическом анализе для определения марганца. Известно несколько фосфатов Мп(III) и среди них ортофосфат МпР0 4* Н 2 0 серо-зеленого цвета, метафосфат Мп(Р0 3) 8 - крас­ного цвета. Описано получение марганцевой фиолето­вой - порошкообразного пигмента с эмпирической формулой NH 4 MnP 2 0 7 . Это вещество разлагается при 120-340° С с образованием голубого неустойчивого продукта , который в свою очередь разлагается при 340-460° С на [Мп 2 (Р 4 0 12)] и [Мп 3 (Р 3 0 9) 2 ]. При взаимодействии свежеосажденной Мп(ОН) 3 с раствором Н 3 Р0 3 образуется осадок красно-фиолетового цвета Н[Мп(НР0 3) 2 ]*ЗН 2 0 . Фосфаты марганца нерастворимы в воде.

Фосфиды . Свойства фосфидов марганца приведены в табл. 9. Монофосфид марганца получают нагреванием смеси красного фосфора и возогнанного в вакууме электролитического марганца, а Мп 2 Р и МпР - электролизом расплавов, содержащих Мп 2 0 3 и фосфат натрия. Фосфиды марганца растворяются в азотной кислоте и царской водке, причем растворимость увеличивается с уменьшением содержания в них фосфора.

Таблица 9

Свойства фосфидов марганца

Кристаллическая структура

Т. пл., °С

Тетрагональная

Ромбическая

Кубическая

Ромбическая

Силициды . Недавно уточнен состав силицида марганца MnSi 1,72 , который обладает полупроводниковыми свой­ствами.

Арсенаты . Известны простые арсенаты марганца Mn 3 (As0 4) 2 Н 2 0, MnHAs0 4* H 2 0 и Mn(H 2 As0 4) 2 , а также двойные соли

NH 4 MnAs0 4 *6H 2 0.

Гидриды . Есть указание на образование неустойчивого гид­рида МпН в условиях электрического разряда в водороде между марганцевыми электродами. Получен легколетучий пента-карбонилгидрид марганца МпН(СО) 5 , в котором водород, по дан­ным изучения инфракрасных спектров, связан непосредственно с марганцем. Соединение бесцветное, т. пл. -24,6°С.

Нитриды . Физические и химические свойства нитридов мар­ганца исследованы мало. Это нестойкие соединения (см. табл. 7), при нагревании легко отдают азот. При нагревании Mn 2 N и Mn 3 N 2 с водородом образуется аммиак. Mn 4 N обладает сильно вы­раженными ферромагнитными свойствами. Mn 3 N 2 получают при нагревании амальгамы марганца в среде сухого азота.

Бориды. Установлено существование боридов марганца МпВ, МпВ 2 , МпВ 4 , Мп 2 В, Мп 3 В 4 и Мп 4 В. Химическая стойкость и тем­пература плавления повышаются с увеличением содержания в них бора. Получены бориды марганца путем спекания сбрикетированных смесей порошков электролитического марганца с рафи­нированным бором в среде очищенного аргона при температуре 900-1350° С. Все бориды марганца легко растворяются в соляной кислоте, скорость растворения уменьшается по мере повышения в них содержания бора.

Карбонаты. Моногидрат МпС0 3 *Н 2 0 получают осаждением из насыщенного С0 2 раствора соли Мп(П) кислым карбонатом натрия; обезвоживается нагреванием под давлением в отсутствие кислорода воздуха. Растворимость МпС0 3 в воде мала (ПР = 9* 10- 11). В сухом состоянии устойчив на воздухе, влажный -лег­ко окисляется и темнеет вследствие образования Мп 2 0 3 . При взаимодействии солей Мп(П) и растворимых карбонатов других металлов обычно получают основные карбонаты марганца.

Перекисные производные. Mn(IV) известны в виде коричнево-черных солей надкислоты Н 4 Мп0 7 [НОМп(ООН) 3 ]. Они могут быть получены действием Н 2 0 2 на сильно охлажденный щелочной рас­твор КМп0 4 . При низких концентрациях КОН образуется К 2 Н 2 Мп0 7 , в более концентрированных его растворах -К 3 НМп0 7 . Оба соединения неустойчивы.

Гетерополисоединения. Мп(П) с Мо0 3 образует гетерополисоединение (NH 4) 3 H 7 *3H 2 0, Mn(IV) с W0 3 - соеди­нение Na 2 H 6 .

Ацетаты. Из раствора МпСО 3 в уксусной кислоте кристалли­зуется Мn(С 2 Н 3 О 2) 2* 4Н 2 0 в виде устойчивых на воздухе бледно-красных игл. Из водного раствора Мп(С 2 Н 3 0 2) 2 кристаллизуется с двумя молекулами воды. В сухом воздухе последнее соединение устойчиво, при действии воды подвергается гидролизу. Мп(С 2 Н 3 0 2) 3 получают окислением Мп(С 2 Н 3 0 2) 2 перманганатом калия или хлором. Известен лишь безводный ацетат Мп(С 2 Н 3 0 2) 3 , легко подвергающийся гидролизу.

Оксалаты. МпС 2 0 4 получают при взаимодействии горячих растворов щавелевой кислоты и солей Мп(П). На холоду кристал­лизуется с тремя молекулами воды. На воздухе МпС 2 0 4 ЗН 2 0 неустойчив и переходит в МпС 2 0 4 -2Н 2 0. Оксалат марганца мало растворим в воде, с оксалатами щелочных металлов он образует двойные соли М 2 С 2 0 4 -МпС 2 0 4 . Установлено ступенчатое образова­ние комплексов МпС 2 0 4 , [Мп(С 2 0 4) 2 ] 2- и [Мп(С 2 0 4) 3 ] 4 - с констан­тами нестойкости соответственно 7*10- 3 , 1,26*10 -2 и 1,77*10- 2 Оксалаты марганца (Ш) известны только в виде комплекс­ных соединений с щелочными металлами. Триоксалатоманганат калия К 3 [Мн(С 2 0 4) 3 ]*3Н 2 0 кристаллизуется в виде темно-красных призм. Это соединение разлагается на свету или при нагревании. Константы нестойкости комплексов [Мп(С 2 0 4)] + , [Мп(С 2 0 4) 2 ]- и [Мп(С 2 0 4) 3 ] 3- соответственно равны 1,05*10- 10 ; 2,72*10- 17 ; 3,82*10- 20 .

Формиаты. Установлено образование комплексов Мп(П) с НСОО- состава [Мп(НСОО)] + и [Мп(НСОО) 2 ] с константами ус­тойчивости 3 и 15 соответственно.

Мп(П) с винной, лимонной, салициловой, яблочной и другими кислотами образует в водном растворе комплексы с соотношением Мп к аниону 1: 1, в этиловом спирте, ацетоне и диоксане - с со­отношением 1: 2 . Исследовано комплексообразование Мп(П) с аскорбиновой кислотой. Образуемые в щелочной среде комплексы имеют общую формулу n - , где А - анион аскорбиновой кислоты. С койевой кислотой Мп(П) образует комплексные соединения [МпА(Н 2 0) 2 ] + и МпА 2 (где А -анион койевой кислоты), устойчивость которых характеризуется вели­чинами lg K l = 3,95 и lg K 2 = 2,83 соответственно.

Купферон с марганцем образует малорастворимое соединение Mn(C 6 H 5 0 2 N 2) 2 . Растворимость осадка повышается при из­бытке соли марганца и купферона.

Формальдоксим при взаимодействии с Мп(П) в щелочной среде дает бесцветное комплексное соединение, быстро окисляющееся на воздухе в красно-коричневый, очень устойчивый комплекс 2 -.

Диэтилдитиокарбаминат натрия (ДДТКNа) с Мп(П) образует светло-желтый осадок, на воздухе при избытке реагента перехо­дящий в коричнево-фиолетовый комплекс Мп(ДДТК) 3 . Константа нестойкости комплекса

2,8*10- 5 . Растворимость диэтилдитиокарбамината марганца в различных растворителях дана в табл. 10.

Таблица 10

Растворимость диэтилдитиокарбамината марганца в различных растворителях

Раствори-

Растворимость

Растворитель

Растворимость

г/100 мл раствори­теля

г*моль/1000 мл раствори­теля

г/100 мл раствори­теля

г*моль/1000 мл раствори­теля

Вода Хлороформ Четыреххлористый углерод

3,3*10- 4 0,364 0,202

Бензол Бутилацетат

Комплексон III образует с марганцем (II) комплекс Na 2 *6H 2 0 - белое с розоватым оттенком кристаллическое вещество, хорошо растворимое в воде.

Выделены также комдлексонаты марганца - H 2 MnY*4H 2 0; (NH 4) 2 MnY*4H 2 O; Mn 2 Y*9H 2 0, где Y 4- - анион этилендиаминтетрауксусной кислоты.

Прочие органические соединения марганца. Константы не­стойкости комплексов марганца с метилтимоловым синим и ксиленоловым оранжевым соответственно равны 0,089*10- 6 и 1,29*10- 6 . Марганец реагирует с дитизоном только при рН > 7. Состав дитизоната марганца отвечает отношению металла к дитизону, равно­му 1: 2. Марганец образует окрашенные комплексные соединения с 1-(2-пиридилазо)-нафтолом-2 (ПАН), 4-(2-пиридилазо)-резорщшом (ПАР), 8-оксихинолином, которые плохо растворимы в воде (за исклю­чением комплекса с ПАР), хорошо растворимы в органических растворителях и используются для фотометрического определе­ния марганца. Для фотометрического определения марганца ис­пользуют также его комплексы с бензолгидроксамовой кислотой, антранилгидроксамовой кислотой, теноилтрифтораце­тоном, тиооксином и другими органическими реаген­тами. С ПАР и 9-салицилфлуороном марганец образует комплексы с соотношением Мп к аниону, равным 1: 2, с константами нестойкости 3,9*10- 12 и 5,5*10- 14 соответственно.





error: Контент защищен !!