Динамика вращательного движения. Вращательное движение тела

ЛЕКЦИЯ №4

ОСНОВНЫЕ ЗАКОНЫ КИНЕТИКИ И ДИНАМИКИ

ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ. МЕХАНИЧЕСКИЕ

СВОЙСТВА БИОТКАНЕЙ. БИОМЕХАНИЧЕСКИЕ

ПРОЦЕССЫ В ОПОРНО-ДВИГАТЕЛЬНОМ АППАРАТЕ

ЧЕЛОВЕКА.

1. Основные законы кинематики вращательного движения.

Вращательные движения тела вокруг неподвижной оси является наиболее простым видом движения. Оно характеризуется тем, что любые точки тела описывают окружности, центры которых расположены на одной прямой 0 ﺍ 0 ﺍﺍ , которая называется осью вращения (рис.1).

При этом положение тела в любой момент времени определяется углом поворота φ радиуса вектора R любой точки А относительно своего начального положения. Зависимость его от времени:

(1)

является уравнением вращательного движения. Быстрота вращения тела характеризуется угловой скоростью ω. Угловая скорость всех точек вращательного тела одинакова. Она является векторной величиной. Этот вектор направлен по оси вращения и связан с направлением вращения правилом правого винта:

. (2)

При равномерном движении точки по окружности

, (3)

где Δφ=2π – угол, соответствующий одному полному обороту тела, Δt=T – время одного полного оборота, или период вращения. Единица измерения угловой скорости [ω]=c -1 .

При равномерном движении ускорение тела характеризуется угловым ускорением ε (вектор его расположен аналогично вектору угловой скорости и направлен согласно с ним при ускоренном и в обратном направлении – при замедленном движении):

. (4)

Единица измерения углового ускорения [ε]=c -2 .

Вращательное движение можно характеризовать также линейной скоростью и ускорением его отдельных точек. Длина дуги dS, описываемой любой точкой А (рис.1) при повороте на угол dφ определяется по формуле: dS=Rdφ. (5)

Тогда линейная скорость точки :

. (6)

Линейное ускорение а :

. (7)

2. Основные законы динамики вращательного движения.

Вращение тела вокруг оси вызывается силой F, приложенной к любой точке тела, действующей в плоскости перпендикулярной оси вращения и направленной (или имеющей составляющую в этом направлении) перпендикулярно радиусу вектору точки приложения (рис.1).

Моментом силы относительно центра вращения называют векторную величину, численно равную произведению силына длину перпендикуляраd, опущенного из центра вращения на направление силы, называемого плечом силы. На рис.1 d=R, поэтому

. (8)

Момент вращающей силы является векторной величиной. Векторприложен к центру окружности О и направлен вдоль оси вращения. Направление векторасогласуется с направлением силы по правилу правого винта. Элементарная работаdA i , при повороте на малый угол dφ, когда тело проходит малый путь dS, равна:

Мерой инертности тела при поступательном движении является масса. При вращении тела мера его инертности характеризуется моментом инерции тела относительно оси вращения.

Моментом инерции I i материальной точки относительно оси вращения называют величину, равную произведению массы точки на квадрат расстояния её от оси (рис.2):

. (10)

Моментом инерции тела относительно оси называют сумму моментов инерции материальных точек, из которых состоит тело:

. (11)

Или в пределе (n→∞):
, (12)

где интегрирование производится по всему объёмуV. Подобным образом вычисляются моменты инерции однородных тел правильной геометрической формы. Момент инерции выражается в кг·м 2 .

Момент инерции человека относительно вертикальной оси вращения, проходящей через центр масс (центр масс человека находится в сагиттальной плоскости несколько впереди второго крестового позвонка), в зависимости от положения человека имеет следующие значения: 1,2 кг·м 2 при стойке «смирно»; 17 кг·м 2 – в горизонтальном положении.

При вращении тела его кинетическая энергия складывается из кинетических энергий отдельных точек тела:

Продифференцировав (14), получим элементарное изменение кинетической энергии:

. (15)

Приравняв элементарную работу (формула 9) внешних сил к элементарному изменению кинетической энергии (формула 15), получим:
, откуда:
или, учитывая, что
получим:
. (16)

Это уравнение называется основным уравнением динамики вращательного движения. Эта зависимость аналогична IIзакону Ньютона для поступательного движения.

Моментом импульса L i материальной точки относительно оси называется величина, равная произведению импульса точки на расстояние её до оси вращения:

. (17)

Момент импульса Lтела, вращающегося вокруг неподвижной оси:

Момент импульса есть векторная величина, ориентированная по направлению вектора угловой скорости.

Теперь возвратимся к основному уравнению (16):

,
.

Подведём постоянную величину Iпод знак дифференциала и получим:
, (19)

где Mdtназывают импульсом момента силы. Если на тело не действуют внешние силы (М=0), то равно нулю и изменение момента количества движения (dL=0). Это означает, что момент импульса остаётся постоянным:
. (20)

Этот вывод называется законом сохранения момента импульса относительно оси вращения. Его используют, например, при вращательных движениях относительно свободной оси в спорте, например в акробатике и т.д. Так, фигурист на льду, изменяя в процессе вращения положение тела и соответственно момент инерции относительно оси вращения, может регулировать свою скорость вращения.

Твёрдое тело, вращающееся вокруг некоторых осей, проходящих через центр масс, если оно освобождено от внешних воздействий, сохраняет вращение неопределённо долго . (Это заключение аналогично первому закону Ньютона для поступательного движения).

Возникновение вращения твёрдого тела всегда вызывается действием внешних сил, приложенных к отдельным точкам тела. При этом неизбежно возникновение деформаций и появление внутренних сил, обеспечивающих в случае твёрдого тела практическое сохранение его формы. При прекращении действия внешних сил вращение сохраняется: внутренние силы не могут ни вызвать, ни уничтожить вращение твёрдого тела.

Результатом действия внешней силы на тело, имеющее неподвижную ось вращения, является ускоренное вращательное движение тела . (Это заключение аналогично второму закону Ньютона для поступательного движения).

Основной закон динамики вращательного движения : в инерциальной системе отсчёта угловое ускорение , приобретаемое телом, вращающимся относительно неподвижной оси, пропорционально суммарному моменту всех внешних сил , действующих на тело, и обратно пропорционально моменту инерции тела относительно данной оси:

Можно дать и более простую формулировку основному закону динамики вращательного движения (его ещё называют вторым законом Ньютона для вращательного движения ): вращающий момент равен произведению момента инерции на угловое ускорение :

Моментом импульса (моментом количества движения , угловым моментом ) тела называется произведение его момента инерции на угловую скорость :

Момент импульса – векторная величина. Его направление совпадает с направлением вектора угловой скорости.

Изменение момента импульса определяется следующим образом:

. (I.112)

Изменение момента импульса (при неизменном моменте инерции тела) может произойти, только вследствие изменения угловой скорости и всегда обусловлено действием момента силы .

Согласно формуле , а также формулам (I.110) и (I.112) изменение момента импульса можно представить в виде:

. (I.113)

Произведение в формуле (I.113) называется импульсом момента силы или движущим моментом . Он равен изменению момента импульса.

Формула (I.113) справедлива при условии, что момент силы не меняется с течением времени . Если же момент силы зависит от времени, т.е. , то

. (I.114)

Формула (I.114) показывает, что: изменение момента импульса равно интегралу по времени от момента силы . Кроме того, если эту формулу представить в виде: , то из неё будет следовать определение момента силы : мгновенный момент силы представляет собой первую производную момента импульса по времени ,

ЛАБОРАТОРНАЯ РАБОТА №107

Проверка основного уравнения динамики

вращательного движения

Цель работы: Экспериментальная проверка основного закона динамики вращательного движения с помощью маятника Обербека.

Приборы и принадлежности: маятник Обербека с миллисекундомером FРМ – 15, штангенциркуль.

Теоретическое введение

При рассмотрении вращения твердого тела с динамической точки зрения наряду с понятием о силах вводится понятие о моментах сил и наряду с понятием о массе – понятие о моменте инерции.

Пусть материальная точка массой т под действием внешней силы движется криволинейно относительно неподвижной точки О. На материальную точку действует момент силы и точка обладает моментом импульса. Положение движущейся материальной точки определяется радиус-вектором , проведенным к ней из точки О (рис.1). Моментом силы относительно неподвижной точки О называется векторная величина , равная векторному произведению радиус-вектора вектор силы


Вектор направлен перпендикулярно плоскости векторов и и его направление соответствует правилу правого винта. Модуль момента сил равен


где a - угол между векторами и , h=rsin a - плечо силы, равное кратчайшему расстоянию от точки О до линии действия (вдоль которой действует сила) силы .

Моментом импульса относительно точки О называется векторная величина, равная векторному произведению радиуса вектора на вектор импульса , то есть

Вектор направлен перпендикулярно плоскости векторов и (рис.2). Модуль момента импульса равен

где b - угол между направлением векторов и .

Основной закон динамики вращательного движения

Пусть механическая система, состоящая из N материальных точек под действием внешних сил, результирующая которых , совершает криволинейное движение относительно неподвижной точки О, то есть

где - радиус-вектор, проведенный от точки О до i -ой материальной точки, - вектор силы, действующей на i -ую материальную точку.

Также можно найти момент импульса системы

где - момент импульса i -ой материальной точки.

Момент импульса зависит от времени t , так как скорость является функцией от времени. Взяв производную от момента импульса системы по времени t , получим

Формула (7) является математическим выражением основного закона динамики вращательного движения системы, согласно которому скорость изменения момента импульса системы по времени равна результирующему моменту внешних сил, действующих на систему.

Закон (7) справедлив и для твердого тела, т.к. твердое тело можно рассматривать как совокупность материальных точек.

Пусть в частном случае твердое тело вращается относительно неподвижной оси, проходящей через центр масс, под действием внешней силы . Твердое тело разбиваем на материальные точки. Для материальной точки массой m i уравнение движения запишется

Момент импульса для i – ой материальной точки равен

Поскольку при вращательном движении b = 90 0 , то и линейная скорость связана с угловой скоростью формулой Тогда (9) можно записать в виде

Величина представляет собой момент инерции материальной точки относительно оси Z. Тогда (10) примет вид

С учетом (11) основной закон динамики вращательного движения твердого тела относительно неподвижной оси запишется

где - момент инерции твердого тела относительно оси Z.

При

где - угловое ускорение. Согласно основному уравнению динамики вращательного движения (12) результирующий момент внешней силы, действующей на тело, равен произведению момента инерцииJ тела на его угловое ускорение.


Из уравнения (12) следует, что при J = const угловое ускорение тела

прямо пропорционально моменту внешних сил относительно оси вращения, т.е.

При M = const угловое ускорение обратно пропорционально моменту инерции тела, т.е.

Целью настоящей работы является проверка соотношений (13) и (14), а, следовательно, и основного уравнения динамики вращательного движения (12), следствиями которого они являются.

Описание рабочей установки и метода измерений

Для проверки соотношений (13) и (14) используется маятник Обербека, представляющий собой инерционное колесо в виде крестовины. На четырех взаимно перпендикулярных стержнях 1 расположены четыре одинаковых цилиндрических груза 2, которые можно перемещать вдоль стержней и закреплять на определенном расстоянии от оси. Грузы закрепляются симметрично, т.е. так, чтобы их центр масс совпадал с осью вращения. На горизонтальной оси крестовины имеется двухступенчатый диск 3, на который наматывается нить. Один конец нити прикреплен к диску, а ко второму концу нити подвешен груз 4, под действием которого прибор приводится во вращение. Общий вид маятника Обербека FРМ-06 изображен на рис.3. Для удержания системы крестовины вместе с грузами в состоянии покоя используется тормозной электромагнит. С целью отсчета высоты падения грузов на колонне нанесена миллиметровая шкала 5. Время падения груза 4 измеряется миллисекундомером FРМ-15, к которому подключены фотоэлектрические датчики №1(6) и №2(7). Фотоэлектрический датчик №2(7) вырабатывает электроимпульс конца измерений времени и включает тормозной электромагнит.

Если предоставить возможность грузу 4 двигаться, то это движение будет происходить с ускорением a .

где t - время движения груза с высоты h . При этом шкив со стержнями и находящимися на них грузами будет вращаться с угловым ускорением e .

где r - радиус шкива.

Вращающий момент силы, приложенной к крестовине и сообщающий угловое ускорение вращающейся части прибора, находим по формуле

где Т - сила натяжения шнура. По второму закону Ньютона для груза 4 имеем

откуда

где g - ускорение свободного падения.

Из формул (12), (15), (16), (17) и (19) имеем

Порядок выполнения работы и обработка результатов измерений

1. Измерить штангенциркулем радиус большого и малого шкивов r 1 и r 2 .

2. Определить массу груза 4 взвешиванием на технических весах с точностью ± 0,1 г.

3. Проверить соотношение (13). Для этого:

- закрепить цилиндрические подвижные грузы на стержнях на ближайшем расстоянии от оси вращения так, чтобы крестовина была в положении безразличного равновесия;

- намотать нить на большой шкив радиуса r 1 и измерить время движения груза t с высоты h миллисекундомером, для чего

- включить сетевой шнур измерителя в сеть питания;

- нажать клавишу «СЕТЬ» и проверить, показывают ли все индикаторы измерителя нуль и горят ли все индикаторы обоих фотоэлектрических датчиков;

- переместить груз в верхнее положение и проверить, находится ли схема в состоянии покоя;

- нажать клавишу «ПУСК» и миллисекундомером измерить время движения груза;

- нажать клавишу «СБРОС» и проверить, произошло ли обнуление показаний измерителя и освобождение блокировки электромагнитом;

- переместить груз в верхнее положение, отжать клавишу «ПУСК» и проверить, произошла ли повторная блокировка схемы;

- опыт повторить 5 раз. Высоту h не рекомендуется менять в течение всей работы;

- по формулам (15), (16), (20) вычислить значения a 1 , e 1 , М 1 ;

- не меняя расположения подвижных грузов и оставляя тем самым неизменным момент инерции системы, опыт повторить, наматывая нить с грузом на малый шкив радиусом r 2 ;

- по формулам (15), (16), (20) вычислить значения a 2 , e 2 , М 2 ;

- проверить справедливость следствия основного закона динамики вращательного движения:

, при

- данные результатов измерений и вычислений занести в таблицы 1 и 2.

4. Проверить соотношение (1 4 ). Для этого:

- раздвинуть подвижные грузы до упоров на концах стержней, но так, чтобы крестовина снова была в положении безразличного равновесия;

- для малого шкива r 2 определить время движения груза t / по данным 5 опытов;

- по формулам (15), (20), (21) определить значения a / , e / , J 1 ;

- при проверке соотношения при можно пользоваться значениями предыдущего опыта, положив и ;

- по формуле (21) определить значение J 2 ;

- вычислить значения и .

- Результаты измерений и вычислений занести в таблицу 3.

Таблица 1

r 1

m

h

t 1

< t 1 >

a 1

e 1

M 1

кг

м/с 2

с -2

Н × м

Таблица 2

r 2

t 2

< t 2 >

a 2

e 2

M 2

M 1 /M 2

e 1 / e 2

м/с 2

с -2

Н × м

Таблица 3

r 2

t /

< t / >

a /

e /

J 1

a //

J 2

e //

e / / e //

J 2 / J 1

м/с 2

с -2

кг × м 2

м/с 2

кг × м 2

с -2

Вопросы для допуска к работе

1. Какова цель работы?

2. Сформулируйте основной закон динамики вращательного движения. Поясните физический смысл величин, входящих в данный закон, укажите единицы их измерения в «СИ».

3. Опишите устройство рабочей установки.

Вопросы для защиты работы

1. Дайте определения момента сил, момента импульса материальной точки относительно неподвижной точки О.

2. Сформулируйте основной закон динамики вращательного движения твердого тела относительно неподвижной точки О и неподвижной оси Z.

3. Дайте определение момента инерции материальной точки и твердого тела.

4. Выведите рабочие формулы.

5. Выведите соотношение при и при

6. Есть ли критические замечания к данной работе?

Момент силы

Вращающее действие силы определяется ее моментом. Моментом силы относительно какой-либо точки называется векторное произведение

Радиус-вектор, проведенный из точки в точку приложения силы (рис.2.12). Единица измерения момента силы .

Рисунок 2.12

Величина момента силы

или можно записать

где - плечо силы (кратчайшее расстояние от точки до линии действия силы).

Направление вектора определяется по правилу векторного произведения или по правилу «правого винта» (векторы и параллельным переносом совмещаем в точке О, направление вектора определяется так, чтобы из его конца поворот от вектора к был виден против часовой стрелки – на рис 2.12 вектор направлен перпендикулярно плоскости чертежа «от нас» (аналогично по правилу буравчика – поступательное движение соответствует направлению вектора , вращательное соответствует повороту от к )).

Момент силы относительно какой-либо точки равен нулю, если линия действия силы проходит через эту точку.

Проекция вектора на какую-либо ось, например, ось z, называется моментом силы относительно этой оси. Чтобы определить момент силы относительно оси, сначала проецируют силу на плоскость, перпендикулярную оси (рис. 2.13), а затем находят момент этой проекции относительно точки пересечения оси с перпендикулярной ей плоскостью. Если линия действия силы параллельна оси, или пересекает ее, то момент силы относительно этой оси равен нулю.


Рисунок 2.13

Момент импульса

Моментомимпульса материальной точки массой , движущейся со скоростью , относительно какой-либо точки отсчета , называют векторное произведение

Радиус-вектор материальной точки (рис. 2.14), - ее импульс.

Рисунок 2.14

Величина момента импульса материальной точки

где -кратчайшее расстояние от линии вектора до точки .

Направление момента импульса определяется аналогично направлению момента силы.

Если выражение для L 0 умножить и разделить на l получим:

Где - момент инерции материальной точки - аналог массы во вращательном движении.

Угловая скорость.

Момент инерции твердого тела

Видно, что получающиеся формулы очень похожи на выражения для импульса и для второго закона Ньютона соответственно, только вместо линейной скорости и ускорения используются угловые скорость и ускорение, а вместо массы – величина I=mR 2 , именуемая моментом инерции материальной точки .

Если тело нельзя считать материальной точкой, но можно считать абсолютно твердым, то его момент инерции можно считать суммой моментов инерции бесконечно малых его частей, поскольку угловые скорости вращения этих частей одинаковы (рис. 2.16). Сумма бесконечно малых – интеграл:

Для любого тела существуют оси, проходящие через его центр инерции, обладающие таким свойством: при вращении тела вокруг таких осей в отсутствии внешних воздействий оси вращения не меняют своего положения. Такие оси называются свободными осями тела . Можно доказать, что для тела любой формы и с любым распределением плотности существуют три взаимно перпендикулярные свободные оси, именуемые главными осями инерции тела. Моменты инерции тела относительно главных осей именуются главными (собственными) моментами инерции тела.

Главные моменты инерции некоторых тел приведены в табл.:

Теорема Гюйгенса-Штейнера.

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями .

Основное уравнение динамики вращательного движения

Основной закон динамики вращательного движения можно получить из второго закона Ньютона для поступательного движения твердого тела

Где F – сила, приложенная к телу массой m ; а – линейное ускорение тела.

Если к твердому телу массой m в точке А (рис. 2.15) приложить силу F , то в результате жесткой связи между всеми материальными точками тела все они получат угловое ускорение ε и соответственные линейные ускорения, как если бы на каждую точку действовала сила F 1 …F n . Для каждой материальной точки можно записать:

Где поэтому

Где m i – масса i- й точки; ε – угловое ускорение; r i – ее расстояние до оси вращения.

Умножая левую и правую части уравнения на r i , получаем

Где – момент силы – это произведение силы на ее плечо.

Рис. 2.15. Твердое тело, вращающееся под действием силы F около оси “ОО”

– момент инерции i -й материальной точки (аналог массы во вращательном движении).

Выражение можно записать так:

Просуммируем левую и правую части по всем точкам тела:

Уравнение – основной закон динамики вращательного движения твердого тела. Величина – геометрическая сумма всех моментов сил, то есть момент силы F , сообщающий всем точкам тела ускорение ε. – алгебраическая сумма моментов инерции всех точек тела. Закон формулируется так: «Момент силы, действующий на вращающееся тело, равен произведению момента инерции тела на угловое ускорение».

С другой стороны

В свою очередь - изменение момента импульса тела.

Тогда основной закон динамики вращательного движения можно переписать в виде:

Или - импульс момента силы , действующий на вращающееся тело, равен изменению его момента импульса .

Закон сохранения момента импульса

Аналогично ЗСИ.

Согласно основному уравнению динамики вращательного движения момент силы относительно оси Z: . Отсюда в замкнутой системе и, следовательно, – суммарный момент импульса относительно оси Z всех тел, входящих в замкнутую систему есть величина неизменная . Это выражает закон сохранения момента импульса . Этот закон действует только в инерциальных системах отсчёта.

Проведем аналогию между характеристиками поступательного движения и вращательного.

Основания и фундаменты рассчитывают по 2 предельным состояниям

По несущей способности: N – заданная расчетная нагрузка на основание в наиболее невыгодной комбинации; - несущая способность (предельная нагрузка) основания для данного направления нагрузки N ; - коэффициент условий работы основания (<1); - коэффициент надежности (>1).
По предельным деформациям: - расчетная абсолютная осадка фундамента; - расчетная относительная разность осадок фундаментов; , - предельные величины, соответственно абсолютной и относительной разности осадок фундаментов (СНиП 2.02.01-83*)

Динамика вращательного движения

Предисловие

Обращаю внимание студентов на то, что ЭТОТ материал в школе не рассматривался АБСОЛЮТНО (кроме понятия момента силы).

1. Закон динамики вращательного движения

a. Закон динамики вращательного движения

b. Момент силы

c. Момент пары сил

d. Момент инерции

2. Моменты инерции некоторых тел:

a. Кольцо (тонкостенный цилиндр)

b. Толстостенный цилиндр

c. Сплошной цилиндр

e. Тонкий стержень

3. Теорема Штейнера

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса

5. Работа при вращательном движении

6. Кинетическая энергия вращения

7. Сопоставление величин и законов для поступательного и вращательного движения

1a. Рассмотрим твердое тело, которое может вращаться вокруг неподвижной оси ОО (рис.3.1). Разобьем это твердое тело на отдельные элементарные массы Δm i . Равнодействующую всех сил, приложенных к Δm i , обозначим через . Достаточно рассмотреть случай, когда сила лежит в плоскости, перпендикулярной оси вращения: составляющие сил, параллельные оси, не могут влиять на вращение тела, так как ось закреплена. Тогда уравнение второго закона Ньютона для касательных составляющих силы и ускорения запишется в виде:

Нормальная составляющая силы обеспечивает центростремительное ускорение и на угловое ускорение не влияет. Из (1.27): ,где – радиус вращения i -той точки. Тогда

Умножим обе части (3.2) на :

Заметим, что

где α – угол между вектором силы и радиус-вектором точки (рис.3.1), – перпендикуляр, опущенный на линию действия силы из центра вращения (плечо силы). Введём понятие момента силы .

1b. Моментом силы относительно оси называется вектор, направленный по оси вращения и связанный с направлением силы правилом буравчика, модуль которого равен произведению силы на ее плечо: . Плечо силы l относительно оси вращения – это кратчайшее расстояние от линии действия силы до оси вращения. Размерность момента силы:

В векторной форме момент силы относительно точки:

Вектор момента силы перпендикулярен и силе, и радиус-вектору точки её приложения:

Если вектор силы перпендикулярен оси, то вектор момента силы направлен по оси по правилу правого винта, а величина момента силы относительно этой оси (проекция на ось) определяется формулой (3.4):

Момент силы зависит и от величины силы, и от плеча силы. Если сила параллельна оси, то .

1c. Пара сил – это две равные по величине и противоположные по направлению силы, линии действия которых не совпадают (рис.3.2). Плечо пары сил – это расстояние между линиями действия сил. Найдём суммарный момент пары сил и () в проекции на ось, проходящую через точку О:

То есть момент пары сил равен произведению величины силы на плкчо пары:

Вернёмся к (3.3). С учётом (3.4) и (3.6):

1d. Определение: скалярная величина , равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси ОО:

Размерность момента инерции

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (3.9) можно переписать в векторной форме:

Просуммируем (3.10) по всем элементарным массам, на которые разбито тело:

Здесь учтено, что угловое ускорение всех точек твердого тела одинаково, и его можно вынести за знак суммы. В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона, силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (3.11) остается суммарный момент только внешних сил: .

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

Таким образом, ; – это и есть основной закон динамики вращательного движения твёрдого тела (аналог второго закона Ньютона ): угловое ускорение тела прямо пропорционально суммарному моменту внешних сил и обратно пропорционально моменту инерции тела :

Момент инерции I твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он существенно зависит не только от массы тела, но и от ее распределения относительно оси вращения (в направлении, перпендикулярном оси).

В случае непрерывного распределения массы сумма в (3.12) сводится к интегралу по всему объему тела:

2a. Момент инерции тонкого кольца относительно оси, проходящей через его центр перпендикулярно плоскости кольца.

поскольку для любого элемента кольца его расстояние до оси одинаково и равно радиусу кольца: .

2b. Толстостенный цилиндр (диск) с внутренним радиусом и внешним радиусом .

Вычислим момент инерции однородного диска плотностью ρ , высотой h, внутренним радиусом и внешним радиусом (рис.3.3) относительно оси, проходящей через центр масс перпендикулярно плоскости диска. Разобьем диск на тонкие кольца толщиной и высотой так, что внутренний радиус кольца равен , внешний – . Объем такого кольца , где – площадь основания тонкого кольца. Его масса:

Подставим в (3.14) и проинтегрируем по r ():


Масса диска , тогда окончательно:

2c. Сплошной цилиндр (диск).

В частном случае сплошного диска или цилиндра радиусом R подставим в (3.17) R 1 =0, R 2 =R и получим:

Момент инерции шара радиуса R и массой относительно оси, проходящей через его центр (рис.3.4), равен (без доказательства):

2e. Момент инерции тонкого стержня массой и длиной относительно оси, проходящей через его конец перпендикулярно стержню (рис.3.5).

Стержень разобьём на бесконечно малые участки длиной . Масса такого участка . Подставим в (3.14) и проинтегрируем от 0 до :

Если ось проходит через центр стержня перпендикулярно ему, можно рассчитать момент инерции половины стержня по (3.20) и затем удвоить:

3. Если ось вращения не проходит через центр масс тела (рис.3.6), вычисления по формуле (3.14) могут быть довольно сложными. В этом случае расчет момента инерции облегчается применением теоремы Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции I c тела относительно оси, проходящей через центр масс тела параллельно данной оси, и произведения массы тела на квадрат расстояния между осями:

Посмотрим, как работает теорема Штейнера, если применить её к стержню:

Нетрудно убедиться, что получилось тождество, поскольку в этом случае расстояние между осями равно половине длины стержня .

4. Момент импульса тела. Изменение момента импульса тела. Импульс момента силы. Закон сохранения момента импульса.

Из закона динамики вращательного движения и определения углового ускорения следует:

Если , то . Введём момент импульса твёрдого тела как

Соотношение (3.24) – это основной закон динамики твёрдого тела для вращательного движения. Его можно переписать так:

и тогда это будет аналог второго закона Ньютона для поступательного движения в импульсной форме (2.5)

Выражение (3.24) можно проинтегрировать:

и сформулировать закон изменения момента импульса: изменение момента импульса тела равно импульсу суммарного момента внешних сил . Величина называется импульсом момента силы и аналогична импульсу силы в формулировке второго закона Ньютона для поступательного движения (2.2) ; момент импульса является аналогом импульса .

Размерность момента импульса

Момент импульса твёрдого тела относительно его оси вращения – это вектор, направленный по оси вращения по правилу буравчика.

Момент импульса материальной точки относительно точки О (рис.3.6) – это:

где – радиус-вектор материальной точки, – её импульс. Вектор момента импульса направлен по правилу буравчика перпендикулярно плоскости, в которой лежат векторы и : на рис.3.7 – к нам из-за рисунка. Величина момента импульса

Твёрдое тело, вращающееся относительно оси, разобьём на элементарные массы и просуммируем по всему телу моменты импульса каждой массы (то же самое можно записать в виде интеграла; это непринципиально):

Поскольку угловая скорость всех точек одинакова и направлена по оси вращения, то можно записать в векторной форме:

Таким образом, доказана эквивалентность определений (3.23) и (3.26).

Если суммарный момент внешних сил равен нулю, то момент импульса системы не изменяется (см.3.25):

. Это закон сохранения момента импульса . Это возможно, когда:

а) система замкнута (или );

б) у внешних сил нет касательных составляющих (вектор силы проходит через ось/центр вращения);

в) внешние силы параллельны закреплённой оси вращения.

Примеры использования/действия закона сохранения момента импульса:

1. гироскоп;

2. скамья Жуковского;

3. фигуристка на льду.

5. Работа при вращательном движении.

Пусть тело повернулось на угол под действием силы и угол между перемещением и силой равен ; – радиус-вектор точки приложения силы (рис.3.8), тогда работа силы равна:





error: Контент защищен !!