Энергетика в химической промышленности. Ее роль

Российская химическая промышленность по объему производства находится на одиннадцатом месте в мире. Доля отрасли в общем объеме промышленного производства страны составляет 6 %. На химических предприятиях сосредоточено 7 % основных фондов (пятое место после машиностроения, топливной промышленности, энергетики и металлургии), обеспечивающих 8 % стоимости промышленного экспорта и 7 % налоговых поступлений в бюджет. Предприятия химического комплекса являются поставщиками сырья, полупродуктов, различных материалов (пластмассы, химические волокна, шины, лаки и краски, красители, минеральные удобрения и т. д.) для всех отраслей и способны оказывать существенное воздействие на масштабы, направления и эффективность их развития.

Российский химпром сегодня

Преобразования с начала рыночных реформ существенно изменили структуру химического производства по формам собственности: к настоящему времени химический комплекс имеет самую немногочисленную группу предприятий, оставшихся в собственности государства. В результате приватизации контрольные пакеты акций значительной части химических предприятий перешли в руки внешних инвесторов. Это в основном нефтяные и газовые компании.

Как заявляют специалисты отрасли, российской химической промышленности необходим качественный скачок, иначе она станет абсолютно неконкурентоспособной. Среди основных факторов, тормозящих развитие отрасли, – стандартные для нашей промышленности проблемы. Во-первых, это изношенность фондов – установленное на российских предприятиях технологическое оборудование крайне отстало от современных требований (сроки эксплуатации значительной его части составляют 20 и более лет, степень износа основных фондов – около 46 %). Другие проблемы – это несоответствие структуры производства российского химического комплекса современным тенденциям химической промышленности развитых стран, а также тот факт, что основу производства российского химического комплекса составляет продукция с низкой степенью передела первичного сырья.

Если говорить о стратегических задачах отрасли, то это техническое перевооружение и модернизация действующих и создание новых экономически эффективных и экологически безопасных производств, развитие экспортного потенциала и внутреннего рынка химической продукции и развитие ресурсно-сырьевого и топливно-энергетического обеспечения химического комплекса. Среди других задач эксперты называют организационно-структурное развитие химического комплекса в направлении увеличения выпуска высокотехнологичной продукции, а также повышение эффективности НИОКР и инновационной активности предприятий российской химической промышленности.

Это тем более важно, так как в период 2020 и до 2030 г., согласно анализу, сделанному специалистами Министерства промышленности и торговли, перед российской химической промышленностью будут стоять задачи обеспечить запрос на новые высокотехнологичные материалы со стороны машиностроения, судостроения, медицины, вертолетостроения, авиастроения, энергетического машиностроения.

Для разработок в космическом, авиационном и ядерно-энергетическом секторах также потребуются новые химические материалы, композитные материалы, герметизирующие материалы, звукоизолирующие материалы, электрические провода и кабели, покрытия. Будут повышаться и без того высокие требования к техническим свойствам продуктов, таким, как высокая прочность, устойчивость к воздействию излучения, устойчивость к коррозии, к высокотемпературному и низкотемпературному воздействию, а также устойчивость к старению материалов.

Например, сейчас в мировой автомобильной промышленности полимеры занимают второе место после металлов как сырье для производства автокомпонентов. В России же наблюдается дефицит и ограниченный марочный ассортимент всех видов производимых пластиков, что создает серьезный барьер на пути увеличения номенклатуры производимых автокомпонентов.

Доля полимерных композитов в общем объеме стройматериалов в России также достаточно низка. Если в гражданском строительстве в основном применяются «традиционные» материалы, то в таких секторах, как строительство мостов, железных дорог, железнодорожных туннелей и др., у полимерных композитов в России есть значительные перспективы.

Таким образом, как говорят специалисты, налаживание производства необходимых полимеров в России может стать значительным сегментом импортозамещения. При этом применение продуктов химии в строительстве постоянно расширяется: это и новые утеплительные материалы и добавки в конструкционные материалы, и изоляционные материалы, и покрытия, производящие электричество из солнечного света, и дорожные покрытия, позволяющие измерить транспортный поток, и др.

На рынке также появляются новые химические продукты: пластики с долгим циклом жизни, материалы, способные к самодиагностике и самоадаптации, высокотехнологичные волокна нового поколения, самовосстанавливающаяся экорезина и «умные» наноматериалы, изменяющие форму по желанию пользователя. Специалисты говорят о полимерах с функцией активных мембран, способных сортировать молекулы, об аморфных полимерах, которые могут восстанавливать поврежденные покрытия, об очень важных в текущей политике России арктических видах топлива и т. д.

Многие специалисты также прогнозируют дальнейший рост значимости биологически полученных материалов. В среднесрочной перспективе ожидается массовое производство химических продуктов из возобновляемых ресурсов («белая» химия): биотоплива, продуктов из биодеградирующих полимеров, биосенсоров и биочипов. По предварительным оценкам экспертов, рынок биополимеров (полимеров, изготовленных на основе возобновляемых ресурсов) будет ежегодно расти на 8‑10 % и уже к 2020 г. их доля в общем рынке полимеров составит 25‑30 %.

Все это, по мнению чиновников из Минпромторга, может производиться и в России – в том случае, если в отечественную химическую промышленность пойдут необходимые инвестиции.

Энергетика и химия

Если говорить о связях химии и энергетики, то они теснейшие: химическая промышленность потребляет огромное количество энергии. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т. п. Значительных затрат энергии нуждаются производство карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т. п. Химические производства вместе с нефтехимическими являются энергоемкими областями индустрии. Выпуская почти 7 % промышленной продукции, они потребляют в пределах 13‑20 % энергии, которая используется всей промышленностью.

Однако и достижения химии работают на энергетику. Уже сегодня химики работают над вопросами максимального и комплексного энерготехнологического использования топливных ресурсов – уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т. п.

Например, во многих странах занимаются созданием рентабельной технологии переработки угля в жидкое (а также газообразное) топливо. Работают над этой проблемой и российские химики. Суть современного процесса переработки угля в синтез-газ заключается в следующем. В плазменный генератор подается смесь водяного пара и кислорода. Затем в раскаленный газовый факел поступает угольная пыль, и в результате химической реакции образуется смесь оксида углерода и водорода, т. е. синтез-газ. Из него получают метанол, который может заменить бензин в двигателях внутреннего сгорания и выгодно отличается от нефти, газа, угля в плане воздействия на экологию.

В России также разработаны химические методы изъятия вяжущей нефти (содержит высокомолекулярные углеводороды), значительная часть которой остается в шламовых амбарах. Для увеличения выхода нефти в воду, которую закачивают в пласты, прибавляют поверхностно-активные вещества, их молекулы размещаются на границе нефть-вода, которая увеличивает подвижность нефти.

Очень перспективной видится водородная энергетика, которая основывается на сжигании водорода, во время которого вредные выбросы не возникают. Тем не менее для ее развития нужно решить ряд задач, связанных со снижением себестоимости водорода, созданием надежных средств его хранения и транспортировки. Если эти задачи будут разрешимы, водород будет широко использоваться в авиации, водном и наземном транспорте, промышленном и сельскохозяйственном производствах. Над этими вопросами российские ученые тесно работают с европейскими коллегами.

Одним из ключевых направлений остается решение проблем, связанных с рентабельной переработкой «тяжелой» высоковязкой нефти, а также тяжелых остатков нефтеперерабатывающих производств. Глубина переработки нефти в странах ЕС составляет не менее 85 %, и в прогнозном периоде это значение будет увеличиваться. На предприятиях российского нефтеперерабатывающего комплекса требуемый набор вторичных процессов для переработки тяжелых фракций нефти в большинстве случаев отсутствует, и глубина переработки составляет порядка 70 %. Повышение данного показателя позволит получать дополнительную прибыль и повысить эффективность использования вторичного сырья.

Уже сегодня Институт нефтехимического синтеза РАН совместно с Грозненским нефтяным институтом (ГрозНИИ) создали принципиально новую технологию гидрогенизационной подготовки гудрона на наноразмерных катализаторах, после которой возможно применение обычных высокоэффективных процессов каталитического крекинга или гидрокрегинга вакуумного дистиллята, т. е. традиционных методов глубокой переработки нефти. При этом комплексность переработки нефти предполагает как рациональное извлечение из нефти ценных компонентов (масел, жидких и твердых парафинов, нефтеновых кислот и т. д.), так и оптимальную переработку ранее трудно утилизируемых продуктов, например легких газов, асфальтов, песков. Безотходность переработки нефти, ставшая особо острой в связи с возрастающим отрицательным воздействием человеческой деятельности на окружающую среду, предусматривает в том числе полную переработку всех фракций нефти с максимальным извлечением полезных компонентов: применение технологий, катализаторов и реагентов исключает образование вредных выбросов и отходов.

Кроме того, для России одним из наиболее интересных направлений остается газохимия, которая остро нуждается в простых и экономически эффективных технологиях конверсии природного газа в жидкие продукты, рассчитанных на эксплуатацию непосредственно в районах газодобычи, в т. ч. в приполярных областях и на морском шельфе.

С помощью химической промышленности Россия может значительно расширить свою долю на рынке не только первичных энергоресурсов, но и гораздо более прибыльном рынке дорогостоящих химических продуктов и экологически чистых моторных топлив. Именно в этой области Россия имеет наибольшие шансы уже в ближайшие годы выйти на рынок высоких технологий. Переход мирового рынка к ультранизкосернистым бензинам и дизтопливам, влияющим на оздоровление окружающей среды, – важное событие, вовлекающее огромное число звеньев хозяйственных и государственных механизмов. Этот переход сопровождается развитием технологий глубокой и сверхглубокой очистки жидких фракций, а также разработкой новых процессов очистки и переработки технологических и попутных нефтезаводских газов. Здесь российские химики также могли бы внести свою лепту.

Особенно тесно химическая промышленность России взаимодействует с энергетической отраслью в сфере ядерной энергетики. Причем речь идет не только о производстве тепловыделяющих элементов, но и о более экзотических проектах. Например, именно для АЭС в перспективе найдут еще одно применение – для производства водорода. Часть полученного водорода будут потребляться химической промышленностью, другая часть послужит для питания газотурбинных установок, включаемых при пиковых нагрузках.

Наноматериалы и биокатализ

К перспективным технологиям химической промышленности специалисты относят разработку новых технологий и средств утилизации радиоактивных отходов; молекулярный дизайн, химические аспекты энергетики, такие, как создание новых химических источников тока, разработка технологий получения топлив из ненефтяного и возобновляемого сырья, высокоэнергетические вещества и материалы и т. д.

В нанохимии к наиболее «продвинутым» направлениям относят нанокатализ, производство наноматериалов для приема, обработки и передачи информации, молекулярные носители памяти, разработку наномодуляторов.

Биокаталитические технологии предполагается использовать для производства биоразлагаемых и электропроводящих полимеров; высокомолекулярных полимеров для повышения нефтеотдачи пластов и водоочистки; антикоррозионных и антистатических покрытий металлоконструкций, превосходящих по эффективности лакокрасочные покрытия; биосенсоров и биочипов, использующих принципы высокоспецифического биологического восприятия и узнавания для использования в медицине, авиакосмической промышленности и производстве компьютерной техники. Можно также упомянуть новый метод разделения и очистки химических смесей, получение и нанесение порошковых покрытий, обессоливание воды, очистку воды и почвы, в том числе от тяжелых металлов и радионуклидов.

Как говорят специалисты, освоение нано- и биотехнологий приведет к появлению нового поколения продуктов с расширенными свойствами, что, в свою очередь, приведет к их новому применению во многих отраслях промышленности, в том числе энергетике. Это, например, новые материалы для хранения водорода, усовершенствованные мембраны для опреснительных и очистных сооружений, самовосстанавливающиеся покрытия и т. д.

Таким образом, в современных условиях энергетика все больше нуждается в новейших химических технологиях, и российские производители также отзываются на этот спрос.

– Расскажите о новинках вашего производства в части химической промышленности, применяемой в энергетике. Какая продукция наиболее востребована заказчиками?

Мария Зайцева, директор направления «Атомная энергетика» ООО «НПП «ВМП-Нева»: – Научно-производственный холдинг «ВМП» специализируется в области разработки, производства и внедрения покрытий для долговременной защиты металла и бетона.

Выпускаемые антикоррозионные и огнезащитные материалы, а также полимерные покрытия пола имеют высокие технологические и эксплуатационные характеристики, которые достигаются за счет высокоэффективных пигментов, химически и атмосферостойких полимеров, специальных наполнителей и вспомогательных добавок. В сфере энергетики мы работаем более 17 лет. Сегодня обращаем внимание специалистов отрасли на новый интересный материал, уже имеющий положительный опыт применения на АЭС. Эмаль ВИНИКОР® ЭП-1155Д разработана для защиты зоны контролируемого доступа в том числе реакторного блока. Это единственный материал в России, который прошел смоделированные испытания в условиях штатной работы реакторного блока. На сегодняшний день испытания подтверждают возможность работы покрытия без потери защитных параметров в течение 50 лет. Все это позволяет нам предлагать данный материал проектировщикам и эксплуатационным службам станций, заводам по переработке ядерных отходов и хранилищ, везде, где есть высокие требования «Росатома» к безопасности объектов. Другой материал для объектов энергетики и гидротехники – грунт-эмаль ИЗОЛЭП®-гидро. Применяется для защиты металлоконструкций, расположенных в подводной зоне и в зоне переменного смачивания. Успешно проходит натурные испытания в башенной градирне АЭС.

В настоящее время трудно переоценить развитие различных отраслей химической промышленности, как и достижений химической науки. Химизация народного хозяйства неотъемлема от технического прогресса, тесно связана с ним. В мире выходит более 7000 научных журналов, публикующих новые научные материалы по химии. В среднем за год выходит более 100000 статей. Совершенствование химических производств, выпускающих самую разнообразную продукцию, обусловило ускоренное развитие химической промышленности за последние 30-40 лет. За последние 70 лет созданы новые отрасли промышленности: в частности синтетического каучука, химических волокон и пластмасс, минеральных удобрений, средств защиты растений, витаминов, антибиотиков и др. Многие полимеры и резина широко применяются при изготовлении различных деталей машин. Нефть, уголь, природный газ, вода, древесина и др. являются важнейшими источниками сырья для химической промышленности.

Химизация народного хозяйства является одним из направлений технического прогресса, способствует интенсификации и ускоренному развитию промышленности и сельского хозяйства. Нет ни одной отрасли промышленности, где бы не использовались продукты переработки нефти и природного газа. Производственные мощности нефтехимических и химических производств выросли во много раз. Кроме того, появилось много новых технологических процессов, предназначенных для крупнотоннажных производств, а бурный рост полимеров явился стимулом ускоренного развития нефтехимии, которая наряду с энергетикой, металлургией и машиностроением обеспечивает технический прогресс многих отраслей промышленности.

Особенностью химической промышленности является производство большого ассортимента разнообразной продукции. Только путем переработки бензола можно получить гексахлоран, хлорбензол, бензолсульфохлорид, нитробензол, фенол и др. Современная химия отличается разнообразием путей синтеза. На одну технологическую схему приходится от 20 до 80 теоретических схем. При этом ведется постоянное совершенствование всех существующих схем технологических процессов. Одновременно ведется постоянная разработка технологических методов, обеспечивающих защиту окружающей среды от загрязнения промышленными химическими выбросами. Большую роль в этом играет создание и внедрение безотходно технологии получения сырья, полупродуктов и готовой продукции. Сохранение чистоты окружающей среды -- большая социальная проблема, связанная с сохранением здоровья людей. В то же время она сочетается с важной экономической задачей -- утилизацией и возвращением в производство ценных продуктов, сырья, материалов и воды. Необходимо создать такие процессы, оборудование, технологические схемы, которые бы исключили загрязнение окружающей среды. Изменение технологии должно идти по пути уменьшения количества выбросов и отходов, сокращения затрат на очистку газов и воды, циркулирующих в производственных системах, быть предприятиями комплексного использования сырья, работающими без отходов. Для создания безотходного промышленного производства в масштабе всей страны необходимы научно-технические основы планирования и проектирования региональных территориально-промышленных комплексов, в которых отходы одних предприятий могли бы служить сырьем для других. Внедрение таких комплексов требует перестройки связей между предприятиями, и отраслями народного хозяйства, больших затрат. На базе имеющихся научных и реализованных на практике разработок уже сегодня возможно создание региональных производственно-хозяйственных систем с высоким уровнем замкнутости при использовании материальных ресурсов.

Химические процессы могут быть легко автоматизированы и оптимизированы. Поэтому в ближайшем будущем автоматизированные системы управления технологическими процессами, компьютеры для постановки экспериментов, автоматизация и рационализация информационного поиска станут обычным явлением.

Химические процессы требуют меньше затрат, чем другие процессы, и отличаются высокой производительностью. Не осуществляются сейчас в производственных условиях синтезы химических веществе использованием магнитных полей высоких напряжений. Эти синтезы, как и электросинтезы, требуют еще изучения. Уже сегодня проводят испытания некоторых реакций восстановления, окисления углеводородов, получения металлоорганических соединений с участием металла электрода, анодного фторирования, получения диметилсебацината пропиленоксида для производств; пластмасс и искусственных волокон, электрохимического инициирования полимеризации и др.

Последние из перечисленных процессов представляют большой интерес для возможной защиты металлов от коррозии, так как полимерные соединения можно наносить на поверхность металлов.

Исключительно большая роль принадлежит химии в создании синтетических пищевых продуктов. Некоторые из них уже сегодня можно получить в лабораторных условиях. Раскрытие тайн химической формы движения материи будет способствовать развитию химической промышленности.

Важнейшей стороной проблемы взаимодействия энергетики и окружающей среды в новых условиях является все более возрастающее обратное влияние -- определяющая роль условий окружающей среды в решении практических задач энергетики (выбор типа энергетических установок, дислокации предприятий, выбор единичных мощностей энергетического оборудования и др.).

Таким образом, на современном этапе проблема взаимодействия энергетики и окружающей среды является весьма многосторонней, находится на острие научно-технической мысли и требует особого внимания. Большое число разнородных исследований по определению отдельных воздействий энергетических объектов на реки, на чистоту воздуха в городах, на растительность и т. п. выполняется гидрологами, климатологами, географами, геологами, биологами и др. Хотя значительное число исследований отдельных вопросов не могло дать общей характеристики состояния проблемы, накопление объема материалов способствовало подготовке качественно нового этапа подхода к ее рассмотрению.

Современная энергетика состоит из крупных объединений, обладающих высокой концентрацией производства энергии, централизацией ее распределения, широкими возможностями взаимозаменяемости энергетических ресурсов и развитыми внутренними и внешними связями. Эти черты придают энергетике признаки больших систем, для изучения которых на современном уровне знаний продуктивно используется системный анализ. Развитие энергетики оказывает воздействие на различные компоненты природной среды: на атмосферу (потребление кислорода, выбросы газов, паров и твердых частиц), на гидросферу (потребление воды, переброска стоков, создание новых водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение водного баланса, изменение ландшафта, выбросы на поверхности и в недра твердых, жидких и газообразных токсичных веществ). В настоящее время это воздействие приобретает глобальный характер, затрагивая все структурные компоненты нашей планеты. Многообразие структур, свойств и явлений, существующее как единое целое с развитыми внутренними и внешними связями, позволяет характеризовать окружающую среду как сложную большую систему. С точки зрения человека основной целью этой большой системы является обеспечение равновесного, или близкого к нему, функционирования.

Очевидно, что задачи развития энергетики и сохранения равновесного естественного функционирования природной среды заключают объективное противоречие. Взаимодействие энергетики с окружающей средой происходит на всех стадиях иерархии топливно-энергетического комплекса: добычи, переработки, транспортировки, преобразования и использования энергии. Это взаимодействие обусловлено как способами добычи, переработки и транспортировки ресурсов, связанных с воздействием на структуру и ландшафт литосферы, потреблением и загрязнением вод морей, рек, озер, изменением баланса грунтовых вод, выделением теплоты, твердых, жидких и газообразных веществ во все среды, так и использованием электрической и тепловой энергии от общих сетей и автономных источников. Современный этап проблемы взаимодействия энергетики с окружающей средой следует рассматривать как результат сложного исторического развития этих взаимодействующих больших систем. При этом имеют место принципиальные различия в их развитии: коренные изменения в природной среде происходят в геологической шкале времени, а изменения масштабов развития энергетики -- в исторически краткие отрезки времени.

Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.

Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

Источники

Наиболее применяемыми источниками химической энергии являются: нефтяные месторождения (нефть и ее производные), газоконденсатные месторождения (природный газ), угольные бассейны (каменный уголь), болота (торф), леса (древесина), а также поля (зеленые растения), луга (солома), моря (водоросли), и т.п.

Химические источники энергии являются «традиционными», однако их использование оказывает влияние на климат планеты. При нормальном функционировании экосистемы, солнечная преобразуется в форму химической, и хранится в ней на протяжении продолжительного времени. Использование этих природных запасов, да и вообще нарушение энергетического баланса планеты приводит к непредсказуемым последствиям.

Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).

Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии . Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.

Современное промышленное высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах , в плазменных генераторах и топливных элементах . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К великому сожалению ученых и инженеров, к.п.д. тепловых машин довольно мал – не более 40%. Ограничения на дальнейший рост кпд наложены не материалами, а самой природой. 40% — это предельный кпд тепловой машины и дальше его увеличить невозможно.

Топливный элемент производит непосредственное преобразование энергии химических связей в электрическую энергию. В некотором роде то же самое делает и плазменный генератор. Однако, и в том и в другом случае, часть энергии все равно теряется в виде выделяющегося тепла и рассеивается. Возможности решения проблемы рассеяния тепла пока не существует, что снижает кпд любой самой хорошей преобразующей установки.

Химические взаимодействия лежат в основе механической энергии движения тел людей и животных. Человек питается растениями и животными, получая из них энергию химических связей, которая сформировалась благодаря фотосинтезу. Таким образом, первоисточником для химической энергии является лучистая солнечная энергия, или, фактически, энергия ядерного синтеза от процессов, происходящих на Солнце. Как и всё живое на Земле, в конечном счете, человек питается энергией Солнца.

Приведем некоторые примеры цепочек преобразования химической энергии

При сгорании порох превращается в горячие газы, которые в свою очередь сообщают пуле кинетическую энергию. Пуля в этом случае набирает упорядоченную кинетическую энергию за счет теплоты горячих газов (их «неорганизованной» кинетической энергии). Откуда же берут тепловую энергию сами молекулы? До этого взрыва порох был холодным твердым телом, содержащим запас «химической энергии». Он содержал в себе энергию первичного топлива - угля, дров, нефти. А это — молекулярная энергия, запасенная, если угодно, в силовых полях атомов. Представьте, что химическое соединение состоит из атомов, которые вопреки отталкивающим пружинящим межатомным силам посажены на свои места в молекуле и «защелка закрыта». Потенциальная энергия при этом запасается в «сжатых пружинах». Разумеется, химическая энергия - гораздо более сложная вещь, чем такая модель, но общая картина ясна: атомы и молекулы запасают энергию, которая высвобождается при одних химических изменениях и запасается при других. Большая часть горючих веществ высвобождает свою энергию при горении в кислороде, так что энергия их связана с силовыми полями молекул топлива и кислорода. Трудно указать, где она расположена, но количество ее достаточно определенно, поскольку при переходе энергии в другие формы мы можем измерять работу, т. е. получить произведение сила на расстояние, например, столько-то джоулей на каждый килограмм полностью сгоревшего топлива. Химическую энергию пороха или заряда фейерверочной ракеты локализовать легче. Вся она сидит там, внутри молекул горючего.

Пища — источник химической энергии

Пища - источник химической энергии. Пища - это топливо для людей и животных, она снабжает их химической энергией, которая переносится потоком крови к нуждающимся в ней мышцам. Мышцы могут преобразовывать часть получаемой энергии в механическую, поднимая грузы и делая другую полезную работу. Пища содержит в основном атомы углерода, кислорода и водорода. Рассмотрим, к примеру, молекулу простейшего сахара, глюкозы C6H12O6, поддерживающей работу мышц.

В процессе работы мышц и их отдыха, молекулы этого топлива расщепляются пополам, затем отщепляется шесть молекул H2O, а атомы углерода, соединяясь с атомами кислорода, поступающего из легких, дают шесть молекул CO2. Это вкратце сильно упрощенная картина химии жизни. Основные компоненты пищи - крахмал, сахара, жиры и белки - представляют большие молекулы, которые построены из меньших молекулярных структур, состоящих из атомов.

Эти небольшие комплексы синтезируются растениями, связываются ими каким-то способом, образуя растительные вещества, такие, как углеводы и целлюлоза. Животные, поедая растительную или животную пищу, расщепляют эти вещества и перераспределяют их составляющие так, чтобы образовывались нужные большие молекулы. Однако сами животные не синтезируют их частей. Энергию, необходимую для движения и другой деятельности, они получают при дальнейшем расщеплении некоторых молекулярных комплексов на углекислый газ и воду. Эта энергия первоначально была «усвоена» растениями из солнечного света и запасена при синтезе таких комплексов в виде энергии химических связей. Связывание и расщепление этих малых комплексов в пищеварительной системе животного - обычно дело нехитрое и не требует больших затрат энергии, оно быстро совершается микробами или ферментами. Большие молекулы в нашей пище содержатся в углеводах к целлюлозе, которые составлены из множества групп простых молекул сахара наподобие глюкозы, жиров с длинными цепями CH2 и белков - еще больших по величине и очень сложных молекул, необходимых для строительства и обновления тканей. Процесс, посредством которого химическая энергия превращается в теплоту тела или работу мышц, - в сущности, то же горение. При сгорании топлива в пламени происходит соединение его с кислородом с образованием воды и углекислого газа. Простейшее топливо нашего тела, такое, как глюкоза, соединяясь с кислородом, поступающим из легких, также образует воду и углекислый газ, но процесс идет гораздо медленнее и более хитрым путем, нежели простое горение в пламени; температура невелика, а выделение энергии — то же самое. Растения поглощают воду и CO2 из воздуха, соединяют их и создают сахар крахмал и целлюлозу - главные источники энергии животных.

Добывание животными химической энергии для мышц происходит примерно так: из пищи извлекаются простейшие молекулы сахара (точно так же, как и на химическом заводе извлекается спирт из древесной массы), которые запасаются в скоплениях, представляющих собой молекулы нерастворимого «животного» крахмала. Этот запас молекул крахмала расщепляется по мере надобности, поддерживает снабжение мышц сахаром. Когда мышцы сокращаются и производят работу, сахар в две стадии превращается в воду и углекислый газ. Из своей растительной пищи животные еще запасают жиры и «сжигают» их для согревания тела.

Затем все то, что растрачивается человеком и животными, вновь воссоздается растениями, и опять все готово к употреблению. Как же растения делают это? Мы не можем «обратить» действие пламени и «возродить» сгоревшие вещества. Как же растения ухитряются проделывать такой «синтез жизни», сжимая пружинки межмолекулярных сил и закрывая защелки? Поскольку «открывание защелки» приводит к выделению химической энергии, растения должны вкладывать ее при создании агрегата. Им необходимо как снабжение энергией, так и устройство, которое использовало бы ее для синтеза молекул H2O и CO2 в молекулы сахара и крахмала. Солнечный свет снабжает их энергией - порциями световых волн, так сказать, в «расфасованном по пакетикам» виде, а все операции производятся такими «умными» молекулами растения, как зеленый хлорофилл. На солнечном свету зеленый лист растения поглощает CO2 и создает крахмал. Таким образом, растительная и животная жизнь образует цикл, который начинается с воды, углекислого газа и солнечного света и заканчивается водой, углекислотой, теплом и механической энергией животных. Все наши машины, работающие на угле, нефти, ветре, падающей воде, все животные, потребляющие пищу, в конечном итоге получают свое топливо от Солнца.

Просто о сложном – Химическая энергия

  • Галерея изображений, картинки, фотографии.
  • Энергия химической реакции – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Энергия химической реакции.
  • Ссылки на материалы и источники – Химическая энергия.

Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.

Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.

Особенно много энергии потребляет химическая промышленность. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т.п. Значительных затрат энергии нуждаются в производстве карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т.п. Химические производства вместе с нефтехимическими являются энергоёмкими областями индустрии. Выпуская почти 7% промышленной продукции, они потребляют в пределах 13-20% энергии, которая используется всей промышленностью.

Источниками энергии чаще всего являются традиционные невосстановимые природные ресурсы - уголь, нефть, природный газ, торф, сланцы. В последнее время они очень быстро истощаются. Особенно ускоренными темпами уменьшаются запасы нефти и природного газа, а они ограничены и непоправимые. Неудивительно, что это порождает энергетическую проблему.

В течение 80 лет одни основные источники энергии сменялись другими: дерево заменили на уголь, уголь - на нефть, нефть - на газ, углеводородное топливо - на ядерное. К началу 80-х годов в мире около 70% потребности в энергии удволетворялось за счёт нефти и природного газа, 25% - каменного и бурого угля и лишь около 5% - других источников энергии.



В разных странах энергетическую проблему решают по-разному, тем не менее, всюду в её решение значительный вклад делает химия. Так, химики считают, что и в будущем (приблизительно еще лет 25-30) нефть сохранит свою позицию лидера. Но ее взнос в энергоресурсы заметно сократится и будет компенсироваться выросшим использованием угля, газа, водородной энергетики ядерного горючего, энергии Солнца, энергии земных глубин и других видов восстановительной энергии, включая биоэнергетику.

Уже сегодня химики беспокоятся о максимальном и комплексном энерготехнологическом использовании топливных ресурсов - уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т.п.

Источники основной электрической энергии

Тепловые электростанции

Работают на органическом топливе – мазут, уголь, торф, газ, сланцы. Размещаются ТЭС, главным образом, в том регионе, где присутствуют природные ресурсы и вблизи крупных нефтеперерабатывающих предприятий.

Гидроэлектростанции

Возводятся в местах, где большие реки перекрываются плотиной, и благодаря энергии падающей воды вращаются турбины электрогенератора. Получение электроэнергии таким методом считается самым экологичным за счет того, что не происходит сжигание различных видов топлива, следовательно, отсутствуют вредные отходы.

Гидроэлектростанция

Атомные электростанции

Для нагрева воды требуется энергия тепла, которая выделяется в результате ядерной реакции. А в остальном она схожа с тепловой электростанцией.

Атомная электростанция

Нетрадиционные источники энергии

К ним относятся ветер, солнце, тепло земных турбин и океанические приливы. В последнее время их все чаще используют как нетрадиционные дополнительные источники энергии. Ученые утверждают, что к 2050 году нетрадиционные энергоисточники станут основными, а обычные потеряют свое значение.

Энергия солнца

Есть несколько способов ее применения. Во время физического метода получения энергии солнца применяются гальванические батареи, способные поглощать и преобразовывать солнечную энергию в электрическую или тепловую. Также используется система зеркал, отражающая солнечные лучи и направляющая их в трубы, заполненные маслом, где концентрируется солнечное тепло.

В некоторых регионах целесообразнее использовать солнечные коллекторы, с помощью которых есть возможность в частичном решении экологической проблемы и использования энергии для бытовых нужд.

Основные достоинства энергии солнца – общедоступность и неисчерпаемость источников, полная безопасность для окружающей среды, основные экологически чистые источники энергии.

Главный недостаток – потребность в больших площадях земли для строительства солнечной электростанции.

Солнечная электростанция

Энергия ветра

Ветряные электростанции способны производить электрическую энергию только в том случае, когда дует сильный ветер. «Основные современные источники энергии» ветра – ветряк, представляющий собой достаточно сложную конструкцию. В нем запрограммированы два режима работы – слабый и сильный ветер, а также есть остановка двигателя, если очень сильный ветер.

Основной недостаток ветряных электростанций (ВЭС) - шум, получаемый во время вращения лопастей пропеллеров. Самыми целесообразными являются небольшие ветряки, предназначенные для обеспечения экологически безопасной и недорогой электроэнергией дачных участок или отдельных ферм.

Ветряная электростанция

Приливные электростанции

Для производства электрической энергии используется энергия прилива. Для того, чтобы построить простейшую приливную электростанцию потребуется бассейн, перекрытое плотиной устье реки или залив. Плотина оснащена гидротурбинами и водопропускными отверстиями.

Вода во время прилива поступает в бассейн и когда происходит сравнение уровней воды в бассейне и в море, водопропускные отверстия закрываются. С приближением отлива водный уровень уменьшается, напор становится достаточной силы, турбины и электрогенераторы начинают свою работу, постепенно вода из бассейна уходит.

Новые источники энергии в виде приливных электростанций имеют некоторые минусы – нарушение нормального обмена пресной и соленой воды; влияние на климат, так в результате их работы меняется энергетический потенциал вод, скорость и площадь перемещения.

Плюсы – экологичность, невысокая себестоимость производимой энергии, сокращение уровня добычи, сжигания и транспортировки органического топлива.

Нетрадиционные геотермальные источники энергии

Для производства энергии используется тепло земных турбин (глубинные горячие источники). Данное тепло можно применять в любом регионе, но расходы смогут окупиться лишь там, где горячие воды максимально приближены к земной коре – местности активной деятельности гейзеров и вулканов.

Основные источники энергии представлены двумя типами – подземный бассейн естественного теплоносителя (гидротермальный, паротермальный или пароводяной источники) и тепло горных горячих пород.

Первый тип представляет собой готовые к применению подземные котлы, из которых пар или воду добывать можно обычными буровыми скважинами. Второй тип дает возможность получения пара или перегретой воды, которые в дальнейшем можно использовать в энергетических целях.

Основной недостаток обоих типов – слабая концентрация геотермических аномалий, когда горячие породы или источники подходят близко к поверхности. Также требуется обратная закачка в подземный горизонт отработанной воды, поскольку термальная вода имеет множество солей токсичных металлов и химических соединений, которые нельзя сбрасывать в поверхностные водные системы.

Достоинства – данные запасы неисчерпаемы. Геотермальная энергия пользуется большой популярностью благодаря активной деятельности вулканов и гейзеров, территория которых занимает 1/10 площади Земли.

Геотермальная электростанция

Новые перспективные источники энергии – биомасса

Биомасса бывает первичной и вторичной. Для получения энергии можно использовать высушенные водоросли, отходы сельского хозяйства, древесину и т. д. Биологический вариант использования энергии – получение из навоза биогаза в результате сбраживания без доступа воздуха.

На сегодняшний день в мире накопилось приличное количество мусора, ухудшающего окружающую среду, мусор оказывает губительное влияние на людей, животных и на все живое. Именно поэтому требуется развитие энергетики, где будет использоваться вторичная биомасса для предотвращения загрязнения окружающей среды.

Согласно подсчетам ученых, населенные пункты могут полностью обеспечивать себя электроэнергией только за счет своего мусора. Более того, отходы практически отсутствуют. Следовательно, будет решаться проблема уничтожения мусора одновременно с обеспечением населения электроэнергией при минимальных расходах.

Преимущества – не повышается концентрация углекислого газа, решается проблема использования мусора, следовательно, улучшается экология.

Энергетика – основа развития цивилизации, производства, поэтому и в химической промышленности ей отведена ключевая роль. С помощью электричества работают силовые аппараты в индустрии, быту, сельском хозяйстве.

Оно используется в ряде промышленных объектов химической отрасли, принимает участие в определенных технологических процессах (электролиз). Во многом именно благодаря энергетике задается вектор развития научно-технического прогресса.

Считается, что электроэнергетика – один из сегментов «авангардной тройки». Что это значит? То, что этот комплекс ставится в один ряд с информатизацией и автоматизацией. Энергетика развивается во всех странах мира. При этом одни делают упор на строительство атомных электростанций, другие – ТЭС, а третьи вовсе полагают, что нетрадиционные источники электроэнергии придут на замену старым.

Роль энергетики в химическом секторе промышленности

В химической индустрии все процессы проводятся с выделением, затратой или превращением энергии из одного вида в другой. При этом электроэнергия затрачивается не только на проведение химических реакций, процессов, но и на транспортировку, измельчение, сжатие газообразных веществ. Поэтому все предприятия химического сегмента относятся к числу основных потребителей электроэнергии. В отрасли существует понятие энергоемкости. Им обозначается расход электричества на единицу получаемой продукции. Все предприятия имеют различную энергоемкость производственных процессов. При этом каждый завод использует свой вид энергии.

  1. Электрическая . Применяется во время проведения электрохимических и электромагнитных технологических процессов. Довольно широко используется электроэнергия для превращения ее в механическую: измельчение, дробление, синтез, нагревание. Электрическая энергия служит для работы вентиляторов, компрессоров, холодильных машин, насосного оснащения. Основными источниками электричества для индустрии считаются АЭС, ТЭС, ГЭС.
  2. Тепловая энергетика в химической промышленности . Тепловая энергия применяется для осуществления физической работы на производстве. С ее помощью можно проводить нагревание, сушку, плавление, испарение.
  3. Внутриядерная . Она выделяется в процессе синтеза ядер водорода в ядра гелия.
  4. Энергия химической природы . Применяется в гальванических элементах, аккумуляторах. В этих приборах она превращается в электрическую.
  5. Световая энергия . Сфера ее применения – фотохимические реакции, синтез хлористого водорода.

Одними из самых динамично развивающихся секторов энергетики считаются нефтяная и газовая индустрии. Добыча ресурсов занимает свою нишу в мировом производстве, ей отведена ключевая роль в развитии всей цивилизации. Нефть и газ – основа, без которой химическая промышленность не будет нормально функционировать.

Энергетике в химической промышленности уделяется много внимания. Без нее было бы невозможно осуществить большинство химических процессов в современной индустрии.

Чего стоит ожидать от проекта «Химия-2016»

На экспозиции в большом объеме будут представлены инновационные разработки, технологические процессы, методики химического сегмента. Одной из тем выставки станет энергетика и ее влияние на развитие химической промышленности.

На мероприятии ожидается большое количество участников со всего мира. При этом пришедшие на экспозицию смогут не только ознакомиться с продукцией ведущих производителей, но и заключить взаимовыгодные контракты, подписать соглашения о сотрудничестве, освежить взаимоотношения между уже существующими партнерами по бизнесу. Отечественные и зарубежные представители химической отрасли с радостью посещают мероприятие, ведь «Химия» – проект, который освещает все сегменты соответствующего производства.





error: Контент защищен !!