Типовые динамические звенья систем автоматического управления. Типовые звенья САУ Элементарные динамические звенья

Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х( t ) , и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у( t ) . Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

    пропорциональное звено;

    апериодическое звено I-ого порядка;

    апериодическое звено II-ого порядка;

    колебательное звено;

    интегрирующее звено;

    идеальное дифференцирующее звено;

    форсирующее звено I-ого порядка;

    форсирующее звено II-ого порядка;

    звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным .

1. Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W (s ) = K где К – коэффициент усиления.

Пропорциональное звено описывается алгебраическим уравнением:

у(t ) = K · х(t )

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.



4. Переходная функция .

Переходная функция пропорциональное звена имеет вид:

h(t) = L -1 = L -1 = K · 1(t)

5. Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L -1 = K ·δ(t)



Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.

6. Частотные характеристики .

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(j ω ) = K = K +0 ·j

A(ω ) =
= K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев .

Апериодическое звено I -ого порядка

Апериодические звенья иначе еще называются инерционными .

1. Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W (s ) = K /(T · s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал , то ее величина должна быть всегда положительной, т.е. (T > 0).

2. Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T · d у(t )/ dt + у(t ) = K ·х(t )

3. Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.

4. Переходная функция .

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L -1 = L -1 = K – K·e -t/T = K·(1 – e -t/T )


Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: h уст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования T у для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(T у) = (1 – Δ)·h уст = (1 – Δ)·K = K·(1 – e - T у/ T), отсюда е - T у/ T = Δ, тогда T у /T = -ln(Δ), В итоге получаем T у = [-ln(Δ)]·T.

При Δ = 0,05 T у = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

Типовые динамические звенья и их характеристики


Динамическим звеном называется элемент системы, обладающий определенными динамическими свойствами.

Любую систему можно представить в виде ограниченного набора типовых элементарных звеньев, которые могут быть любой природы, конструкции и назначения. Передаточную функцию любой системы можно представить в виде дробно-рациональной функции:

(1)

Таким образом, передаточную функцию любой системы можно представить как произведение простых множителей и простых дробей. Звенья, передаточные функции которых имеют вид простых множителей или простых дробей, называют типовыми или элементарными звеньями. Типовые звенья различаются по виду их передаточной функции, определяющей их статические и динамические свойства.

Как видно из разложения, можно выделить следующие звенья:

1. Усилительное (безынерционное).

2. Дифференцирующее.

3. Форсирующее звено 1-го порядка.

4. Форсирующее звено 2-го порядка.

5. Интегрирующее.

6. Апериодическое (инерционное).

7. Колебательное.

8. Запаздывающее.

При исследовании систем автоматического управления она представляется в виде совокупности элементов не по их функциональному назначению или физической природе, а по их динамическим свойствам. Для построения систем управления необходимо знание характеристик типовых звеньев. Основными характеристиками звеньев являются дифференциальное уравнение и передаточная функция.

Рассмотрим основные звенья и их характеристики.

Усилительное звено (безынерционное, пропорциональное). Усилительным называют звено, которое описывается уравнением:

или передаточной функцией:

(3)

При этом переходная функция усилительного звена (рис. 1а) и его фун-кция веса (рис. 1б) соответственно имеют вид:


Частотные характеристики звена (рис. 2) можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями:


.

Логарифмическая частотная характеристика усилительного звена (рис. 3) определяются соотношением

.

Примеры звена:

1. Усилители, например, постоянного тока (рис. 4а).

2. Потенциометр (рис. 4б).



3. Редуктор (рис. 5).


Апериодическое (инерционное) звено . Апериодическим называют звено, которое описывается уравнением:

или передаточной функцией:

(5)

где Т – постоянная времени звена, которая характеризует его инерционность, k – коэффициент передачи.

При этом переходная функция апериодического звена (рис. 6а) и его функция веса (рис. 6б) соответственно имеют вид:



Частотные характеристики апериодического звена (рис. 7а-в) опреде-ляются соотношениями:


Логарифмические частотные характеристики звена (рис. 8) определяются по формуле



Это асимптотические логарифмические характеристики, истинная характеристика совпадает с ней в области больших и малых частот, а максимальная погрешность будет в точке, соответствующей сопряженной частоте, и равна около 3 дБ. На практике обычно используют асимптотические характеристики. Их основное преимущество в том, что при изменении параметров системы (k и T ) характеристики перемещаются параллельно самим себе.

Примеры звена:

1. Апериодическое звено может быть реализовано на операционных усилителях (рис. 9).


ÆÆ

ОТП БИСН (КСН)

Цель работ – приобретение студентами практических навыков использования методов проектирования бортовых интегрированных (комплексных) систем наблюдения.

Лабораторные работы выполняются в компьютерном классе.

Среда программирования: МАТЛАБ.

Бортовые интегрированные (комплексные) системы наблюдения предназначены для решения задач поиска, обнаружения, распознавания, определения координат объектов поиска и пр.

Одним из главных направлений повышения эффективности решения поставленных целевых задач является рациональное управление поисковыми ресурсами.

В частности, если носителями КСН являются беспилотные летательные аппараты (БЛА), то управление поисковыми ресурсами состоит в планировании траекторий и управлении полетом БЛА, а также управлении линией визирования КСН и т.д.

Решение этих задач базируются на теории автоматического управления.

Лабораторная работа 1

Типовые звенья системы автоматического управления (САУ)

Передаточная функция

В теории автоматического управления (ТАУ) часто используют операторную форму записи дифференциальных уравнений. При этом вводится понятие дифференциального оператораp = d/dt так, что, dy/dt = py , а p n = d n /dt n . Это лишь другое обозначение операции дифференцирования.

Обратная дифференцированию операция интегрирования записывается как 1/p . В операторной форме исходное дифференциальное уравнение записывается как алгебраическое:

a o p (n) y + a 1 p (n-1) y + ... + a n y = (a o p (n) + a 1 p (n-1) + ... + a n)y = (b o p (m) + b 1 p (m-1) + ... + bm)u

Не надо путать эту форму записи с операционным исчислением хотя бы потому, что здесь используются непосредственно функции времени y(t), u(t) (оригиналы ), а не их изображения Y(p), U(p) , получаемые из оригиналов по формуле преобразования Лапласа. Вместе с тем при нулевых начальных условиях с точностью до обозначений записи действительно очень похожи. Это сходство лежит в природе дифференциальных уравнений. Поэтому некоторые правила операционного исчисления применимы к операторной форме записи уравнения динамики. Так оператор p можно рассматривать в качестве сомножителя без права перестановки, то есть py yp . Его можно выносить за скобки и т.п.

Поэтому уравнение динамики можно записать также в виде:

Дифференциальный оператор W(p) называют передаточной функцией . Она определяет отношение выходной величины звена к входной в каждый момент времени: W(p) = y(t)/u(t) , поэтому ее еще называют динамическим коэффициентом усиления .



В установившемся режиме d/dt = 0 , то есть p = 0 , поэтому передаточная функция превращается в коэффициент передачи звена K = b m /a n .

Знаменатель передаточной функции D(p) = a o p n + a 1 p n - 1 + a 2 p n - 2 + ... + a n называют характеристическим полиномом . Его корни, то есть значения p, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функции .

Числитель K(p) = b o p m + b 1 p m - 1 + ... + b m называют операторным коэффициентом передачи . Его корни, при которых K(p) = 0 и W(p) = 0 , называются нулями передаточной функции .

Звено САУ с известной передаточной функцией называется динамическим звеном . Оно изображается прямоугольником, внутри которого записывается выражение передаточной функции. То есть это обычное функциональное звено, функция которого задана математической зависимостью выходной величины от входной в динамическом режиме. Для звена с двумя входами и одним выходом должны быть записаны две передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена в динамическом режиме, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин. Например, одним из динамических звеньев является интегратор. Его передаточная функция W и (p) = 1/p . Схема САУ, составленная из динамических звеньев, называется структурной .

Дифференцирующее звено

Различают идеальное и реальное дифференцирующие звенья. Уравнение динамики идеального звена:

y(t) = k(du/dt), или y = kpu .

Здесь выходная величина пропорциональна скорости изменения входной величины. Передаточная функция: W(p) = kp . При k = 1 звено осуществляет чистое дифференцирование W(p) = p . Переходная характеристика:h(t) = k 1’(t) = d(t) .

Идеальное дифференцирующее звено реализовать невозможно, так как величина всплеска выходной величины при подаче на вход единичного ступенчатого воздействия всегда ограничена. На практике используют реальные дифференцирующие звенья, осуществляющие приближенное дифференцирование входного сигнала.



Его уравнение: Tpy + y = kTpu .

Передаточная функция: W(p) = k(Tp/Tp + 1).

При подаче на вход единичного ступенчатого воздействия выходная величина оказывается ограничена по величине и растянута во времени (рис.5).

По переходной характеристике, имеющей вид экспоненты, можно определить передаточный коэффициентk и постоянную времени Т . Примерами таких звеньев могут являться четырехполюсник из сопротивления и емкости или сопротивления и индуктивности, демпфер и т.п. Дифференцирующие звенья являются главным средством, применяемым для улучшения динамических свойств САУ.

Кроме рассмотренных имеется еще ряд звеньев, на которых подробно останавливаться не будем. К ним можно отнести идеальное форсирующее звено (W(p) = Tp + 1 , практически не реализуемо), реальное форсирующее звено (W(p) = (T 1 p + 1)/(T 2 p + 1) , при T 1 >> T 2 ), запаздывающее звено (W(p) = e - pT ), воспроизводящее входное воздействие с запаздыванием по времени и другие.

Безынерционное звено

Передаточная функция:

АФЧХ: W(j ) = k.

Вещественная частотная характеристика (ВЧХ): P() = k.

Мнимая частотная характеристика (МЧХ): Q() = 0.

Амплитудно-частотная характеристика (АЧХ): A() = k.

Фазовая частотная характеристика (ФЧХ): () = 0.

Логарифмическая амплитудно-частотная характеристика (ЛАЧХ): L() = 20lgk.

Некоторые ЧХ показаны на рис.7.

Звено пропускает все частоты одинаково c увеличением амплитуды в k раз и без сдвига по фазе.

Интегрирующее звено

Передаточная функция:

Рассмотрим частный случай, когда k = 1, то есть

АФЧХ: W(j ) = .

ВЧХ: P() = 0.

МЧХ: Q() = - 1/ .

АЧХ: A() = 1/ .

ФЧХ: () = - /2.

ЛАЧХ: L() = 20lg(1/ ) = - 20lg().

ЧХ показаны на рис.8.

Все частоты звено пропускает с запаздыванием по фазе на 90 о. Амплитуда выходного сигнала увеличивается при уменьшении частоты, и уменьшается до нуля при росте частоты (звено "заваливает" высокие частоты). ЛАЧХ представляет собой прямую, проходящую через точку L() = 0 при = 1. При увеличении частоты на декаду ордината уменьшается на 20lg10 = 20дб, то есть наклон ЛАЧХ равен - 20 дб/дек (децибел на декаду).

Апериодическое звено

При k = 1 получаем следующие выражения ЧХ:

W(p) = 1/(Tp + 1);

;

;

;

() = 1 - 2 = - arctg( T);

;

L() = 20lg(A()) = - 10lg(1 + ( T)2).

Здесь A1 и A2 - амплитуды числителя и знаменателя ЛФЧХ; 1 и 2 - аргументы числителя и знаменателя. ЛФЧХ:

ЧХ показаны на рис.9.

АФЧХ есть полуокружность радиусом 1/2 с центром в точке P = 1/2. При построении асимптотической ЛАЧХ считают, что при < 1 = 1/T можно пренебречь ( T) 2 выражении для L(), то есть L() - 10lg1 = 0.. При > 1 пренебрегают единицей в выражении в скобках, то есть L(ω) - 20lg(ω T). Поэтому ЛАЧХ проходит вдоль оси абсцисс до сопрягающей частоты, затем - под наклоном - 20 дб/дек. Частота ω 1 называется сопрягающей частотой. Максимальное отличие реальных ЛАЧХ от асимптотических не превышает 3 дб при = 1 .

ЛФЧХ асимптотически стремится к нулю при уменьшении ω до нуля (чем меньше частота, тем меньше искажения сигнала по фазе) и к - /2 при возрастании до бесконечности. Перегиб в точке = 1 при () = - /4. ЛФЧХ всех апериодических звеньев имеют одинаковую форму и могут быть построены по типовой кривой с параллельным сдвигом вдоль оси частот.

Форма отчетности

В электронном отчете должны быть указаны:

1. Группа, Ф.И.О. студента;

2. Наименование лабораторной работы, тема, вариант задания;

3. Схемы типовых звеньев;

4. Результаты расчетов: переходные процессы, ЛАФЧХ, для различных параметров звеньев, графики;

5. Выводы по результатам расчетов.

Лабораторная работа 2.

Принцип компенсации

Если возмущающий фактор искажает выходную величину до недопустимых пределов, то применяют принцип компенсации (рис.6, КУ - корректирующее устройство ).

Пусть y о - значение выходной величины, которое требуется обеспечить согласно программе. На самом деле из-за возмущения f на выходе регистрируется значение y . Величина e = y о - y называется отклонением от заданной величины . Если каким-то образом удается измерить величину f , то можно откорректировать управляющее воздействие u на входе ОУ, суммируя сигнал УУ с корректирующим воздействием, пропорциональным возмущению f и компенсирующим его влияние.

Примеры систем компенсации: биметаллический маятник в часах, компенсационная обмотка машины постоянного тока и т.п. На рис.4 в цепи нагревательного элемента (НЭ) стоит термосопротивление R t , величина которого меняется в зависимости от колебаний температуры окружающей среды, корректируя напряжение на НЭ.

Достоинство принципа компенсации : быстрота реакции на возмущения. Он более точен, чем принцип разомкнутого управления. Недостаток : невозможность учета подобным образом всех возможных возмущений.

Принцип обратной связи

Наибольшее распространение в технике получил принцип обратной связи (рис.5).

Здесь управляющее воздействие корректируется в зависимости от выходной величины y(t) . И уже не важно, какие возмущения действуют на ОУ. Если значение y(t) отклоняется от требуемого, то происходит корректировка сигнала u(t) с целью уменьшения данного отклонения. Связь выхода ОУ с его входом называется главной обратной связью (ОС) .

В частном случае (рис.6) ЗУ формирует требуемое значение выходной величины y о (t) , которое сравнивается с действительным значением на выходе САУ y(t) .

Отклонение e = y о -y с выхода сравнивающего устройства подается на вход регулятора Р, объединяющего в себе УУ, УО, ЧЭ.

Если e 0 , то регулятор формирует управляющее воздействие u(t) , действующее до тех пор, пока не обеспечится равенство e = 0 , или y = y о . Так как на регулятор подается разность сигналов, то такая обратная связь называется отрицательной , в отличие от положительной обратной связи , когда сигналы складываются.

Такое управление в функции отклонения называется регулированием , а подобную САУ называют системой автоматического регулирования (САР).

Недостатком принципа обратной связи является инерционность системы. Поэтому часто применяют комбинацию данного принципа с принципом компенсации , что позволяет объединить достоинства обоих принципов: быстроту реакции на возмущение принципа компенсации и точность регулирования независимо от природы возмущений принципа обратной связи.

Основные виды САУ

В зависимости от принципа и закона функционирования ЗУ, задающего программу изменения выходной величины, различают основные виды САУ: системы стабилизации, программные, следящие и самонастраивающиеся системы, среди которых можно выделить экстремальные, оптимальные и адаптивные системы.

В системах стабилизации обеспечивается неизменное значение управляемой величины при всех видах возмущений, т.е. y(t) = const. ЗУ формирует эталонный сигнал, с которым сравнивается выходная величина. ЗУ, как правило, допускает настройку эталонного сигнала, что позволяет менять по желанию значение выходной величины.

В программных системах обеспечивается изменение управляемой величины в соответствии с программой, формируемой ЗУ. В качестве ЗУ может использоваться кулачковый механизм, устройство считывания с перфоленты или магнитной ленты и т.п. К этому виду САУ можно отнести заводные игрушки, магнитофоны, проигрыватели и т.п. Различают системы с временной программой , обеспечивающие y = f(t) , и системы с пространственной программой , в которых y = f(x) , применяемые там, где на выходе САУ важно получить требуемую траекторию в пространстве, например, в копировальном станке (рис.7), закон движения во времени здесь роли не играет.

Следящие системы отличаются от программных лишь тем, что программа y = f(t) или y = f(x) заранее неизвестна. В качестве ЗУ выступает устройство, следящее за изменением какого-либо внешнего параметра. Эти изменения и будут определять изменения выходной величины САУ. Например, рука робота, повторяющая движения руки человека.

Все три рассмотренные вида САУ могут быть построены по любому из трех фундаментальных принципов управления. Для них характерно требование совпадения выходной величины с некоторым предписанным значением на входе САУ, которое само может меняться. То есть в любой момент времени требуемое значение выходной величины определено однозначно.

В самонастраивающихся системах ЗУ ищет такое значение управляемой величины, которое в каком-то смысле является оптимальным.

Так в экстремальных системах (рис.8) требуется, чтобы выходная величина всегда принимала экстремальное значение из всех возможных, которое заранее не определено и может непредсказуемо изменяться.

Для его поиска система выполняет небольшие пробные движения и анализирует реакцию выходной величины на эти пробы. После этого вырабатывается управляющее воздействие, приближающее выходную величину к экстремальному значению. Процесс повторяется непрерывно. Так как в данных САУ происходит непрерывная оценка выходного параметра, то они выполняются только в соответствии с третьим принципом управления: принципом обратной связи.

Оптимальные системы являются более сложным вариантом экстремальных систем. Здесь происходит, как правило, сложная обработка информации о характере изменения выходных величин и возмущений, о характере влияния управляющих воздействий на выходные величины, может быть задействована теоретическая информация, информация эвристического характера и т.п. Поэтому основным отличием экстремальных систем является наличие ЭВМ. Эти системы могут работать в соответствии с любым из трех фундаментальных принципов управления.

В адаптивных системах предусмотрена возможность автоматической перенастройки параметров или изменения принципиальной схемы САУ с целью приспособления к изменяющимся внешним условиям. В соответствии с этим различают самонастраивающиеся и самоорганизующиеся адаптивные системы.

Все виды САУ обеспечивают совпадение выходной величины с требуемым значением. Отличие лишь в программе изменения требуемого значения. Поэтому основы ТАУ строятся на анализе самых простых систем: систем стабилизации. Научившись анализировать динамические свойства САУ, мы учтем все особенности более сложных видов САУ.

Статические характеристики

Режим работы САУ, в котором управляемая величина и все промежуточные величины не изменяются во времени, называется установившимся , или статическим режимом . Любое звено и САУ в целом в данном режиме описывается уравнениями статики вида y = F(u,f) , в которых отсутствует время t . Соответствующие им графики называются статическими характеристиками . Статическая характеристика звена с одним входом u может быть представлена кривой y = F(u) (рис.9). Если звено имеет второй вход по возмущениюf , то статическая характеристика задается семейством кривых y = F(u) при различных значенияхf , или y = F(f) при различных u .

Так примером одного из функциональных звеньев системы регулирования является обычный рычаг (рис.10). Уравнение статики для него имеет вид y = Ku . Его можно изобразить звеном, функцией которого является усиление (или ослабление) входного сигнала в K раз. КоэффициентK = y/u , равный отношению выходной величины к входной называется коэффициентом усиления звена. Когда входная и выходная величины имеют разную природу, его называют коэффициентом передачи .

Статическая характеристика данного звена имеет вид отрезка прямой линии с наклоном a = arctg(L 2 /L 1) = arctg(K) (рис.11). Звенья с линейными статическими характеристиками называются линейными . Статические характеристики реальных звеньев, как правило, нелинейны. Такие звенья называются нелинейными . Для них характерна зависимость коэффициента передачи от величины входного сигнала:K = y/ u const .

Например, статическая характеристика насыщенного генератора постоянного тока представлена на рис.12. Обычно нелинейная характеристика не может быть выражена какой-либо математической зависимостью и ее приходится задавать таблично или графически.

Зная статические характеристики отдельных звеньев, можно построить статическую характеристику САУ (рис.13, 14). Если все звенья САУ линейные, то САУ имеет линейную статическую характеристику и называется линейной . Если хотя бы одно звено нелинейное, то САУ нелинейная .

Звенья, для которых можно задать статическую характеристику в виде жесткой функциональной зависимости выходной величины от входной, называются статическими . Если такая связь отсутствует и каждому значению входной величины соответствует множество значений выходной величины, то такое звено называется астатическим . Изображать его статическую характеристику бессмысленно. Примером астатического звена может служить двигатель, входной величиной которого является

напряжение U , а выходной - угол поворота вала , величина которого при U = const может принимать любые значения.

Выходная величина астатического звена даже в установившемся режиме является функцией времени.

Лабораторная работа 3

Динамический режим САУ

Уравнение динамики

Установившийся режим не является характерным для САУ. Обычно на управляемый процесс действуют различные возмущения, отклоняющие управляемый параметр от заданной величины. Процесс установления требуемого значения управляемой величины называется регулированием . Ввиду инерционности звеньев регулирование не может осуществляться мгновенно.

Рассмотрим САР, находящуюся в установившемся режиме, характеризующемся значением выходной величины y = y o . Пусть в момент t = 0 на объект воздействовал какой - либо возмущающий фактор, отклонив значение регулируемой величины. Через некоторое время регулятор вернет САР к первоначальному состоянию (с учетом статической точности) (рис.1).

Если регулируемая величина изменяется во времени по апериодическому закону, то процесс регулирования называется апериодическим .

При резких возмущениях возможен колебательный затухающий процесс (рис.2а). Существует и такая вероятность, что после некоторого времени Т р в системе установятся незатухающие колебания регулируемой величины - незатухающий колебательный процесс (рис.2б). Последний вид - расходящийся колебательный процесс (рис.2в).

Таким образом, основным режимом работы САУ считается динамический режим , характеризующийся протеканием в ней переходных процессов . Поэтому второй основной задачей при разработке САУ является анализ динамических режимов работы САУ .

Поведение САУ или любого ее звена в динамических режимах описывается уравнением динамики y(t) = F(u,f,t) , описывающее изменение величин во времени. Как правило, это дифференциальное уравнение или система дифференциальных уравнений. Поэтому основным методом исследования САУ в динамических режимах является метод решения дифференциальных уравнений . Порядок дифференциальных уравнений может быть довольно высоким, то есть зависимостью связаны как сами входные и выходные величины u(t), f(t), y(t) , так и скорости их изменения, ускорения и т.д. Поэтому уравнение динамики в общем виде можно записать так:

F(y, y’, y”,..., y (n) , u, u’, u”,..., u (m) , f, f ’, f ”,..., f (k)) = 0 .

К линеаризованной САУ можно применить принцип суперпозиции : реакция системы на несколько одновременно действующих входных воздействий равна сумме реакций на каждое воздействие в отдельности. Это позволяет звено с двумя входами u и f разложить на два звена, каждое из которых имеет один вход и один выход (рис.3).

Поэтому в дальнейшем мы ограничимся изучением поведения систем и звеньев с одним входом, уравнение динамики которых имеет вид:

a o y (n) + a 1 y (n-1) + ... + a n - 1 y’ + a n y = b o u (m) + ... + b m - 1u’ + b m u.

Это уравнение описывает САУ в динамическом режиме лишь приближенно с той точностью, которую дает линеаризация. Однако следует помнить, что линеаризация возможна только при достаточно малых отклонениях величин и при отсутствии разрывов в функции F в окрестностях интересующей нас точки, которые могут быть созданы различными выключателями, реле и т.п.

Обычно n m , так как при n < m САУ технически нереализуемы.

Структурные схемы САУ

Эквивалентные преобразования структурных схем

Структурная схема САУ в простейшем случае строится из элементарных динамических звеньев. Но несколько элементарных звеньев могут быть заменены одним звеном со сложной передаточной функцией. Для этого существуют правила эквивалентного преобразования структурных схем. Рассмотрим возможные способы преобразований.

1. Последовательное соединение (рис.4) - выходная величина предшествующего звена подается на вход последующего. При этом можно записать:

y 1 = W 1 y o ; y 2 = W 2 y 1 ; ...; y n = W n y n - 1 = >

y n = W 1 W 2 .....W n .y o = W экв y o ,

где .

То есть цепочка последовательно соединенных звеньев преобразуется в эквивалентное звено с передаточной функцией, равной произведению передаточных функций отдельных звеньев.

2. Параллельно - согласное соединение (рис.5) - на вход каждого звена подается один и тот же сигнал, а выходные сигналы складываются. Тогда:

y = y 1 + y 2 + ... + y n = (W 1 + W 2 + ... + W3)y o = W экв y o ,

где .

То есть цепочка звеньев, соединенных параллельно - согласно, преобразуется в звено с передаточной функцией, равной сумме передаточных функций отдельных звеньев.

3. Прараллельно - встречное соединение (рис. 6а) - звено охвачено положительной или отрицательной обратной связью. Участок цепи, по которому сигнал идет в противоположном направлении по отношению к системе в целом (то есть с выхода на вход) называется цепью обратной связи с передаточной функцией W ос . При этом для отрицательной ОС:

y = W п u; y 1 = W ос y; u = y o - y 1 ,

следовательно

y = W п y o - W п y 1 = W п y o - W п W oc y = >

y(1 + W п W oc) = W п y o = > y = W экв y o ,

где .

Аналогично: - для положительной ОС.

Если W oc = 1 , то обратная связь называется единичной (рис.6б), тогда W экв = W п /(1 ± W п).

Замкнутую систему называют одноконтурной , если при ее размыкании в какой либо точке получают цепочку из последовательно соединенных элементов (рис.7а).

Участок цепи, состоящий из последовательно соединенных звеньев, соединяющий точку приложения входного сигнала с точкой съема выходного сигнала называется прямой цепью (рис.7б, передаточная функция прямой цепи W п = Wo W 1 W 2) . Цепь из последовательно соединенных звеньев, входящих в замкнутый контур называют разомкнутой цепью (рис.7в, передаточная функция разомкнутой цепи W p = W 1 W 2 W 3 W 4 ). Исходя из приведенных выше способов эквивалентного преобразования структурных схем, одноконтурная система может быть представлена одним звеном с передаточной функцией: W экв = W п /(1 ± W p) - передаточная функция одноконтурной замкнутой системы с отрицательной ОС равна передаточной функции прямой цепи, деленной на единицу плюс передаточная функция разомкнутой цепи. Для положительной ОС в знаменателе знак минус. Если сменить точку снятия выходного сигнала, то меняется вид прямой цепи. Так, если считать выходным сигналy 1 на выходе звена W 1 , то W p = Wo W 1 . Выражение для передаточной функции разомкнутой цепи не зависит от точки снятия выходного сигнала.

Замкнутые системы бывают одноконтурными и многоконтурной (рис.8).Чтобы найти эквивалентную передаточную функцию для данной схемы нужно сначала осуществить преобразование отдельных участков.

Если многоконтурная система имеет перекрещивающиеся связи (рис.9), то для вычисления эквивалентной передаточной функции нужны дополнительные правила:

4. При переносе сумматора через звено по ходу сигнала необходимо добавить звено с передаточной функцией того звена, через которое переносится сумматор. Если сумматор переносится против хода сигнала, то добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим сумматор (рис.10).

Так с выхода системы на рис.10а снимается сигнал

y 2 = (f + y o W 1)W 2 .

Такой же сигнал должен сниматься с выходов систем на рис.10б:

y 2 = fW 2 + y o W 1 W 2 = (f + y o W 1)W 2 ,

и на рис.10в:

y 2 = (f(1/W 1) + y o)W 1 W 2 = (f + y o W 1)W 2 .

При подобных преобразованиях могут возникать неэквивалентные участки линии связи (на рисунках они заштрихованы).

5. При переносе узла через звено по ходу сигнала добавляется звено с передаточной функцией, обратной передаточной функции звена, через которое переносим узел. Если узел переносится против хода сигнала, то добавляется звено с передаточной функцией звена, через которое переносится узел (рис.11). Так с выхода системы на рис.11а снимается сигнал

y 1 = y o W 1 .

Такой же сигнал снимается с выходов рис.11б:

y 1 = y o W 1 W 2 /W 2 = y o W 1

y 1 = y o W 1 .

6. Возможны взаимные перестановки узлов и сумматоров: узлы можно менять местами (рис. 12а); сумматоры тоже можно менять местами (рис.12б); при переносе узла через сумматор необходимо добавить сравнивающий элемент (рис.12в: y = y 1 + f 1 = > y 1 = y - f 1 ) или сумматор (рис.12г: y = y 1 + f 1 ).

Во всех случаях переноса элементов структурной схемы возникают неэквивалентные участки линии связи, поэтому надо быть осторожным в местах съема выходного сигнала.

При эквивалентных преобразованиях одной и той же структурной схемы могут быть получены различные передаточные функции системы по разным входам и выходам.

Лабораторная работа 4

Законы регулирования

Пусть задана какая-то САР (рис.3).

Законом регулирования называется математическая зависимость, в соответствии с которой управляющее воздействие на объект вырабатывалось бы безынерционным регулятором.

Простейшим из них является пропорциональный закон регулирования , при котором

u(t) = Ke(t) (рис.4а),

где u(t) - это управляющее воздействие, формируемое регулятором, e(t) - отклонение регулируемой величины от требуемого значения, K - коэффициент пропорциональности регулятора Р.

То есть для создания управляющего воздействия необходимо наличие ошибки регулирования и чтобы величина этой ошибки была пропорциональна возмущающему воздействию f(t) . Другими словами САУ в целом должна быть статической.

Такие регуляторы называют П-регуляторами .

Так как при воздействии возмущения на объект управления отклонение регулируемой величины от требуемого значения происходит с конечной скоростью (рис.4б), то в начальный момент на вход регулятора подается очень малая величина e , вызывая при этом слабые управляющие воздействия u . Для повышения быстродействия системы желательно форсировать процесс управления.

Для этого в регулятор вводят звенья, формирующие на выходе сигнал, пропорциональный производной от входной величины, то есть дифференцирующие или форсирующие звенья.

Такой закон регулирования называется про

СТРУКТУРНЫЕ СХЕМЫ ЛИНЕЙНЫХ САУ

Типовые звенья линейных САУ

Любые сложные САУ могут быть представлены как совокупность более простых элементов (вспомним функциональные и структурные схемы ). Поэтому для упрощения исследования процессов в реальных системах они представляются в виде совокупности идеализированных схем , которые точно описываются математически и приближенно харак­теризуют реальные звенья систем в определенном диапазоне частот сигналов.

При составлении структурных схем вводятся некие типовые элементарные звенья (простые, далее не делимые), характеризующиеся только своими передаточными функциями , вне зависимости от их конструктивного исполнения, назначения и принципа действия. Классифицируют их по видам уравнений описывающих их работу. В случае линейных САУ различают следующие типы звеньев :

1.Описываемые линейными алгебраическими уравне­ниями относительно выходного сигнала :

а) пропорциональное (статическое, безынерционное);

б) запаздывающее .

2.Описываемые дифференциальными уравнениями первого порядка с постоянными коэффициентами :

а) дифференцирующее ;

б) инерционно-дифференцирующее (реальное дифферен­цирующее);

в) инерционное (апериодическое);

г) интегрирующее (астатическое);

д) интегро-дифференцирующее (упругое).

3.Описываемые дифференциальными уравнениями вто­рого порядка с постоянными коэффициентами :

а) инерционное звено второго порядка (апериодическое звено второго порядка, колебательное).

Используя математический аппарат, изложенный выше, рассмотрим передаточные функции , переходные и импульсные переходные (весовые) характеристики , а также частотные характеристики этих звеньев.

При­ведем формулы, которые будут использованы для этой цели.

1. Передаточная функция : .

2. Переходная характеристика : .

3. : или .

4. КЧХ : .

5. Амплитудная частотная характеристика : ,

где , .

6. Фазовая частотная характеристика : .

По этой схеме и исследуем типовые звенья.

Заметим, что хотя для некоторых типовых звеньев n (порядок производной выходного параметра в левой части уравнения) равняется m (порядок производной входного параметра в правой части уравнения), а не больше m , как говорилось ранее, однако при конструировании реальных САУ из этих звеньев условие m для всего САУ обычно всегда выполняется.

Пропорциональное (статическое , безынерционное ) звено . Это самое простое звено , вы­ходной сигнал которого прямо пропорционален входному сигналу :

где k - коэффициент пропорциональности или передачи звена.

Примерами такого звена являются: а) клапаны с линеаризованными характеристиками (когда изменение расхода жидкости пропорционально степени изменения положения штока ) в рассмотренных выше примерах систем регулирования; б) делитель напряжения; в) рычаж­ная передача и др.

Переходя в (3.1) к изображениям, имеем:

1. Передаточная функция : .

2. Переходная характеристика : , следовательно .

3. Импульсная переходная характеристика : .

4. КЧХ : .

6. ФЧХ: .

Принятое описание связи между входом и выходом справедливо только для идеального звена и соответствует реальным звеньям лишь при низких частотах , . При в реальных звеньях коэффициент передачи k начинает зависеть от частоты и при высоких частотах падает до нуля.

Запаздывающее звено . Это звено описывается уравне­нием

где – время запаздывания.

Примером запаздывающего звена служат: а) длинные электрические линии без потерь; б) длинный трубопровод и др.

Передаточная функция , переходная и импульсная переходная характеристика , КЧХ, а также АЧХ и ФЧХ этого звена:

2. , значит: .

На рис.3.1 изображены: а) годограф КЧХ запаздывающего звена ; б) АЧХ и ФЧХ запазды­вающего звена. Заметим, что при увеличении конец вектора описывает по часовой стрелке все возрас­тающий угол.

Рис.3.1 . Годограф (а) и АЧХ, ФЧХ (б) запаздывающего звена.

Интегрирующее звено . Это звено описывается уравне­нием

где - коэффициент передачи звена.

Примерами реальных элементов, эквивалентные схемы которых сводятся к интегрирующему звену , являются: а) электрический конденсатор, если считать входным сигналом ток, а выходным – напряжение на конденсаторе: ; б) вращающийся вал, если считать входным сигналом угловую скорость вращения, а выходным – угол поворота вала: ; и т.д.

Определим характеристики данного звена:

2. .

Воспользуемся таблицей преобразования Лапласа 3.1, получаем:

.

Умножаем на так как функция при .

3. .

4. .

На рис.3.2 показаны: а) годограф КЧХ интегрирующего звена; б) АЧХ и ФЧХ звена; в) переходная характеристика звена.

Рис.3.2 . Годограф (а), АЧХ и ФЧХ (б), переходная характеристика (в) интегрирующего звена.

Дифференцирующее звено . Это звено описывается урав­нением

где – коэффициент передачи звена.

Найдем характеристики звена:

2. , учитывая, что , находим: .

3. .

4. .

На рис.3.3 показаны: а) годограф звена; б) АЧХ и ФЧХ звена.

а ) б )

Рис. 3.3 . Годограф (а), АЧХ и ФЧХ (б) дифференцирующего звена.

Примером дифференцирую­щего звена являются идеальный конденсатор и индуктивность . Это следует из того, что напряжение u и ток i связаны для конденсатора С и индуктивности L соответственно следующими соотношениями:

Отметим, что реальная емкость обладает небольшой емкостной индуктивностью , реальная индуктивность имеет межвитковую емкость (которые особенно сильно проявляются на больших частотах), что приводит указанные выше формулы к следующему виду:

, .

Таким образом, дифференцирующее звено не может быть технически реализовано , так как порядок пра­вой части его уравнения (3.4) больше порядка левой части. А нам известно, что должно выполняться условие n > m или, в крайнем случае, n = m .

Однако можно прибли­зиться к этому уравнению данного звена , использовав инерционно-дифференцирующее (реальное дифференцирующее )звено .

Инерционно-дифференцирующее (реальное дифференцирующее ) звено описывается уравнением:

где k - коэффициент передачи звена, Т - постоянная времени.

Передаточная функция , переходная и импульсная переходная характеристики , КЧХ, АЧХ и ФЧХ этого звена определяются формулами:

Используем свойство преобразования Лапласа – смещение изображения (3.20), согласно которому: если , то .

Отсюда: .

3. .

5. .

6. .

На рис.3.4 приведены: а) график КЧХ; б) АЧХ и ФЧХ звена.

а ) б )

Рис.3.4 . Годограф (а), АЧХ и ФЧХ реального дифференцирующего звена.

Для того чтобы свойства реального дифференцирующего звена приближались к свойствам идеального , необходимо одновременно увеличивать коэффициент передачи k и уменьшать постоянную времени Т так, чтобы их произведение оста­валось постоянным:

kT = k д,

где k д – коэффициент передачи дифференцирующего звена.

Отсюда видно, что в размерность коэффициента передачи k д дифференцирующего звена входит время .

Инерционное звено первого порядка (апериодическое звено ) одно из самых распространен­ных звеньев САУ. Оно описывается уравнением:

где k – коэффициент передачи звена, Т – постоянная времени.

Характеристики данного звена определяются формулами:

2. .

Пользуясь свойствами интегрирования оригинала и смещением изображения имеем:

.

3. , т.к. при , то на всей временной оси данная функция равна 0 ( при ).

5. .

6. .

На рис.3.5 показаны: а) график КЧХ; б) АЧХ и ФЧХ звена.

Рис.3.5 . Годограф (а), АЧХ и ФЧХ инерционного звена первого порядка.

Интегро-дифференцирующее звено . Это звено описы­вается дифференциальным уравнением первого порядка в наиболее общем виде:

где k - коэффициент передачи звена, Т 1 и Т 2 - постоянные времени.

Введем обозначение:

В зависимости от значения t звено будет обладать раз­личными свойствами. Если , то звено по своим свойствам будет приближаться к интегрирующему и инерционному звеньям. Если , то данное звено по свойствам будет ближе к диф­ференцирующему и инерционно-дифференцирующему .

Определим характеристики интегродифференцирующего звена :

1. .

2. , отсюда следует:

Т.к. при t ® 0, то:

.

6. .

На рис.3.6. приведены: а) график КЧХ; б) АЧХ; в) ФЧХ; г) переходная характеристика звена.

а ) б )

в ) г )

Рис.3.6 . Годограф (а), АЧХ (б), ФЧХ (в), переходная характеристика (г) интегродифференцирующего звена.

Инерционное звено второго порядка . Это звено описывается дифференциальным уравнением второго порядка:

где (капа) – постоянная затухания; Т - постоянная времени, k - коэффициент передачи звена.

Реакция системы, описываемой уравнением (3.8), на единичное ступенчатое воздействие при представляет собой затухающие гармонические колебания , в этом случае звено еще называется колебательным . При колебания не возник­нут, и звено , описываемое уравнением (3.8) называется апериодическим звеном второго порядка . Если , то колебания будут незатухающими с частотой .

Примером конструктивного выполнения данного звена могут служить: а) электрический колебательный контур, содержащий емкость , индуктивность и омичес­кое сопротивление ; б) масса , подвешенная на пружине и имеющая демпфирующее устройство , и т.д.

Определим характеристики инерционного звена второго порядка :

1. .

2. .

Корни характеристического уравнения стоящего в знаменателе определяются:

.

Очевидно, что здесь возможно три случая:

1) при корни характеристического уравнения отрицательные вещественные разные и , тогда переходная характеристика определяется:

;

2) при корни характеристического уравнения отрицательные вещественные одинаковые :

3) при корни характеристического уравнения звена являются комплексно -сопряженными , причем

переходная характеристика определяется формулой:

,

т.е., как отмечалось выше, она приобретает колебательный характер .

3. Также имеем три случая:

1) ,

т.к. при ;

2) , т.к. при ;

3) , т.к. при .

5. .

1.3.1 Особенности классификации звеньев САУ Основная задача теории автоматического управления ТАУ -разработать методы, с помощью которых можно было бы находить или оценивать показатели качества динамических процессов в САУ. Другими словами, рассматриваются не все физические свойства элементов системы, а только те, которые влияют, связаны с видом динамического процесса. Не рассматриваются конструктивное ис­полнение элемента, его габаритные размеры, способ подведения

энергии, особенности дизайна, номенклатура используемых мате­риалов и т.д. Однако, важными будут такие, например, параметры, как масса, момент инерции, теплоемкость, сочетания RC, LC и т.д., напрямую определяющие вид динамического процесса. Особеннос­ти физического исполнения элемента важны только в той степени, в которой они будут влиять на его динамические показатели. Рас­сматривается, таким образом, только одно выделенное свойство эле­мента - характер его динамического процесса. Это позволяет свести рассмотрение физического элемента к его динамической модели в виде математической модели. Решение модели, т.е. дифференциаль­ного уравнения, описывающего поведение элемента, дает динами­ческий процесс, подлежащий качественной оценке.

В основу классификации элементов САУ положены не осо­бенности конструктивного выполнения или особенности их функ­ционального назначения (объект управления, элемент сравнения, регулирующий орган и т.д.), а тип математической модели, т.е. мате­матические уравнения связи между выходной и входной переменны­ми элемента. Причем эта связь может быть задана, как в виде диффе­ренциального уравнения, так и в другой трансформированной форме, например с помощью передаточных функций (ПФ). Дифференциаль­ное уравнение даёт исчерпывающую информацию о свойствах звена. Решив его, при том или ином заданном законе входной величины, по­лучаем реакцию, по виду которой оцениваем свойства элемента.

Введение понятия передаточной функции позволяет получить связь между выходной и входной величинами в операторной форме и при этом воспользоваться некоторыми свойствами передаточной функции, позволяющими существенно упростить математическое представление системы и воспользоваться некоторыми их свойства­ми. Для объяснения понятия ПФ рассмотрим некоторые свойства преобразования Лапласа.

1.3.2 Некоторые свойства преобразования Лапласа Решение моделей динамических звеньев САУ дает измене­ние переменных во временной плоскости. Мы имеем дело с функ­циями X(t). Однако, с помощью преобразования Лапласа их можно трансформировать в функции [Х(р)] с другим аргументом р и новы­ми свойствами.

Преобразование Лапласа есть частный случай соответствия типа: одной функции ставится в соответствие другая функция. Обе функции связаны между собой определённой зависимостью. Соот­ветствие напоминает зеркало, отображающее различным образом, в зависимости от формы, находящийся перед ней объект. Вид отобра­жения (соответствия) может быть выбран произвольным образом, в зависимости от решаемой задачи. Можно, например, искать со­ответствие между совокупностью чисел, смысл которого сводится к тому, как по выбранному числу у из области Y найти число х из области X. Такая связь может быть задана аналитически, в виде таб­лицы, графика, правила и т.д.


Аналогично может быть установлено соответствие между группами функций (рис. 3.1 а), например, в виде:

В качестве соответствия между функциями x(t) и х(р) (рис.3.1 б) может быть использован интеграл Лапласа:

при соблюдении условий: x(t) = 0 при и при t.

В САУ исследуются не абсолютные изменения переменных, а их отклонения от установившихся значений. Следовательно, x(t) - класс функций, описывающих отклонения переменных в САУ и для них выполняется оба условия преобразования Лапласа: первое - так как до приложения возмущения изменения переменных не происхо­дит, второе - так как с течением времени любое отклонение в рабо­тоспособной системе стремится к нулю.

Это условия существования интеграла Лапласа. Получим, в качестве примера изображения простейших функций но Лапласу.

Рис. 3.1. Виды отображения функций

Так, если дана единичная функция x(t) = 1, то

Для экспоненциальной функции x(t) = e -α t изображение по

Лапласу будет иметь вид:

Окончательно:

Полученные функции не сложнее исходных. Функция x(t) называется оригиналом, а х(р) - ее изображением. Условно прямое и обратное преобразование Лапласа можно представить в виде:

L=x(p),L -1 <=x(t).

При этом существует однозначная связь между оригиналом и изображением, и наоборот, оригиналу соответствует только единс­твенное изображение функции. Рассмотрим некоторые свойства преобразования Лапласа.

Изображение дифференциала функции. Пусть функции x(t) соответствует изображение х(р): x(t)-> х(р)- Необходимо найти изображение ее производной x(t) :

Таким образом

При нулевых начальных условиях

Для изображения производной n-го порядка:

Таким образом, изображение производной функции есть изоб­ражение самой функции, умноженное на оператор p в степени n , где п - порядок дифференцирования.

Элементарным динамическим звеном (ЭДЗ) называется мате­матическая модель элемента в виде дифференциального уравнения, не подлежащего дальнейшему упрощению.

1.3.3 Инерционное апериодическое звено первого порядка

Такое звено описывается дифференциальным уравнением первого порядка, связывающего входную и выходную величины:

Примером такого звена кроме термопары, электродвигателя постоянного тока, RL-цепочки, может служить пассивная RC - цепочка (рис. 3.2 г).

Используя основные законы описания электрических цепей получим математическая модель апериодического звена в диффе­ренциальной форме:

Получим связь между входной и выходной величинами звена в форме преобразования Лапласа:

Рис. 3.2. Примеры апериодических звеньев

Отношение выходной величины к входной дает оператор вида.





error: Контент защищен !!