Какая кинематическая пара является плоской. Виды кинематических пар и их краткая характеристика

Кинематическая пара - это соединение двух звеньев, обеспечивающее перемещение одного звена относительно другого.

Кинематические пары передают нагрузку и движение и часто определяют работоспособность и надежность механизма и машины в целом. Поэтому правильный выбор вида пары, ее формы и размеров, а также конструкционных материалов и условий смазывания имеет большое значение при проектировании и эксплуатации машин.

Кинематические пары классифицируются по следующим признакам:

А). По числу степеней подвижности н

Возможные независимые движения одного звена относительно другого называются степенями подвижности кинематической пары H .

Ограничения, накладываемые на относительные движения звеньев, называются условиями связи в кинематических парах.

Число степеней подвижности кинематической пары определяется зависимостью

H =6- S (1.1)

где 6 -максимальное число степеней свободы твердого тела в пространстве (3 поступательных и 3 вращательных движения относительно осей координат XYZ);

S -число условий связи, наложенных кинематической парой на относительное движение каждого звена.

Кинематические пары делятся на: одноподвижные (поступательные, вращательные, винтовые), двухподвижные, (кулачек-толкатель, зуб-зуб), трехподвижные, (сферические), четырёхподвижные, (цилиндр-плоскость), пятиподвижные (шар-плоскость). Примеры приведены в таблице 1.1.

Б). По характеру соприкосновения звеньев

Кинематические пары делятся на низшие и высшие.

Низшими кинематическими парами называются такие, в которых соприкосновение звеньев происходит по поверхности.

Например, одноподвижные поступательная и вращательная кинематические пары,

Высшими называются такие кинематические пары, у которых соприкосновение звеньев происходит по линии или точке.

Например, кинематические пары зуб-зуб, кулачек - толкатель (рис.1.2, 1.3).

Так как в низших кинематических парах звенья соприкасаются по поверхностям, то удельное давление в них невелико, вследствие чего износ в низших кинематических парах невелик.

В местах контакта высших кинематических пар удельное давление очень велико, что вызывает их повышенный износ. Это большой недостаток высших кинематических пар по сравнению с низшими.

Однако они имеют и большое преимущество: если количество низших пар ограничено, то высших пар большое разнообразие, их количество практически не ограничено. Поэтому при помощи высших кинематических пар значительно проще создать механизмы, обеспечивающие заданный закон движения.

В). По характеру относительного движения

Виды кинематических пар приведены в таблице 1.1.

В – вращательная (Н=1), П – поступательная (Н=1), ВП – цилиндрическая (Н=2); ВВВ – сферическая (Н=3), ВВП – шар-цилиндр с прорезью (Н=3), ВПП – плоскостная (Н=3), ВВВП – шар-цилиндр (Н=4), ВВПП – цилиндр-плоскость (Н=4), ВВВПП – шар-плоскость (Н=5). Здесь буква «В» обозначает возможное вращательное движение, «П» -возможное поступательное движение.

Таблица 1.1

Кинематические цепи

Кинематическая цепь - это система звеньев, соединённых с помощью кинематических пар.

Характер относительного движения звеньев, допускаемого ки­нематической парой, зависит от формы звеньев в местахих кон­такта.

Совокупность возможных мест контакта образует на каждом из двух звеньев элемент кинематической пары. Элементом кинематической пары может быть точка , линия , поверхность.

Кинематические пары, элемент которых точка или линия , назы­ваютсявысшими ; кинематические пары, элемент которых поверхность , называются низшими .

В зависимости от геометрии одного (или обоих) из соприкасающихся звеньев различаюткинематические пары сферические, конические, цилиндрические, плоскостные, винтовые.

По характеру допускаемого кинематической парой относительного движения звеньев различают вращательные (В), поступательные (П), вращательно-поступательные (В + П) и с винтовым движением ВП. Различие пар типа В + П и ВПзаключается в том, что в первых относительные движения (вращательное и поступательное) независимы, а во вторых одно движение не может быть осуществлено без другого.

Наряду с парами звеньев, соприкасающихся по одной поверхности, линии или точке, в практике применяют пары с многократным соприкосновением. Это или повторение элементов взаимодей­ствия (шлицевые, многозаходные винтовые, зубчатые пары), или использование одновременного соприкосновения по по­верхности и линии (сферическая пара со штифтом), по цилиндрической и плоской поверхностям (пара со скользящей шпон­кой). Повторение соприкосновений звеньев характеризует эквивалентность пар различных видов. Пара с трехточечным контактом может быть эквивалентна плоскостной или сферической низшей паре по характеру движения звеньев.

Для твердого тела, свободно движущегося в пространстве, число степеней свободы (число независимых между собой возможных перемещений механической сис­темы) равно шести: три поступательных вдоль осей Х, Y, Z и три вращательных вокруг этих осей (рис.2.1).

Для звеньев, входящих в кинема­тическую пару, число степеней свободы всегда меньше шести, так как условия соприкосновения (свя­зей) уменьшают число возможных перемещений одного звена относительно другого: одно звено не может внедряться в другое и не может от него удаляться.

В общем случае каждая кинематическая пара накладывает на относительное движение звеньев S связей, допуская Н=6 – S относительных движений звеньев. В зависимости от числа наложенных связей S (оставшихся степеней свободы H) различают 5 классов кинематических пар. Такая классификация кинематических пар предложена И.И.Артоболевским (таблица 2.1)

В таблицах 2.2-2.4 приведены примеры конструктивного выполнения кинематических пар. Приведенные в табл.2.2 и 2.4 пары классифицированы исходя из предположения, что трение и деформация звеньев отсутствуют. Трение позволяет использо­вать отдельные пары во фрикционных передачах. С учетом деформации пары с точечным контактом могут превращаться в пары с поверхностным сопри­косновением.


Таблица 2.1

Виды кинематических пар

Число условий связи S Число степеней свободы H Обозначение кинематической пары Класс кинематической пары Название пары Рисунок Условное обозначение
I Пяти- подвижная шар-плоскость
II Четырех-подвижная цилидр-плоскость
III Трех-подвижная плоскостная
III Трех-подвижная сферическая
IV Двух-подвижная сферическая с пальцем
IV Двух-подвижная цилиндрическая
V Одно-подвижная винтовая
V Одно-подвижная вращательная
V Одно-подвижная поступательная

Система звеньев, образующих между собой кинематические пары, называется кинематической цепью.

Механизмом называется такая кинематическая цепь, в которой при заданном движении одного или нескольких звеньев, обычно называемых входными или ведущими, относительно любого из них (например, стойки) все остальные совершают однозначно определяемые движения.

Механизм называется плоским, если все точки звеньев, образующих его, описывают траектории, лежащие в параллельных плоскостях.

Кинематическая схема механизма является графическим изображением механизма, выполненным в масштабе посредством условных обозначений звеньев и кинематических пар. Она дает полное представление о структуре механизма и размерах звеньев, необходимых для кинематического анализа.

Структурная схема механизма в отличие от кинематической схемы может быть выполнена без соблюдений масштаба и дает представление лишь о структуре механизма.

Числом степеней свободы механизма называется число не­зависимых координат, определяющих положение всех звеньев относительно стойки. Каждая из таких координат называется обобщенной. То есть число степеней свободы механизма рав­но числу обобщенных координат.

Для определения числа степеней свободы пространствен­ных механизмов применяется структурная формула Сомова-Малышева:

W = 6n - 5p 1 - 4p 2 - 3p 3 - 2p 4 - 1p 5 , (1.1)

где: W - число степеней свободы механизма;

n - число подвижных звеньев;

р 1 , р 2 , р 3 , р 4 , р 5 - соответственно число одно-, двух-, трех-, четырех и

пятиподвижных кинематических пар;

6 - число степеней свободы отдельно взятого тела в про­странстве;

5, 4, 3, 2, 1 - число условий связи, накладываемое соот­ветственно

на одно-, двух-, трех-, четырех и пятиподвижные пары.

Для определения числа степеней свободы плоского меха­низма используется структурная формула Чебышева:

W = 3n - 2p 1 , - 1p 2 , (1.2)

где: W - число степеней свободы плоского механизма;

n - число подвижных звеньев;

р 1 - число одноподвижных кинематических пар, являю­щихся в

плоскости низшими кинематическими парами;

р 2 - число двуподвижных кинематических пар, которые в плоскости

являются высшими;

3 - число степеней свободы тела на плоскости;

2 - число связей, накладываемое на низшую кинематиче­скую

1- число связей, накладываемое на высшую кинематиче­скую пару.

По степени подвижности определяют количество входных звеньев механизма. При получении при расчёте степени подвижности, равной 0 или больше 1, необходимо проверить наличие у механизма пассивных связей или лишних степеней свободы.

Формулы Сомова-Малышева и Чебышева называются структурными, так как они связывают число степеней свободы механизма с числом его звеньев и числом и видом кинема­тических пар.

При выводе этих формул предполагалось, что все нало­женные связи независимы, т.е. ни одна из них не может быть получена как следствие других. В некоторых механизмах это условие не выполняется, т.е. в общее число наложенных свя­зей может войти некоторое число q избыточных (повторных, пассивных) связей, которые дублируют другие связи, не изме­няя подвижности механизма, а только обращая его в статиче­ски неопределимую систему. В этом случае при использова­нии формул Сомова-Малышева и Чебышева эти повторные связи надо вычитать из числа наложенных связей:

W = 6n - (5р 1 + 4р 2 + Зр 3 + 2р 4 + р 5 - q),

W = 3n - (2p 1 + p 2 - q),

откуда q = W - 6n + 5p 1 + 4р 2 + Зр 3 + 2р 4 + p 5 ,

или q = W - 3n +2p 1 + р 2 .

В общем случае в последних уравнениях два неизвест­ных (W и q) и их нахождение представляет собой трудную задачу.

Однако в некоторых случаях W может быть найдено из геометрических соображений, что позволяет определить и q, воспользовавшись последними уравнениями.


Рис. 1.1 а) Кривошипно-ползунный механизм с избыточными



связями (когда оси шарниров непараллельны).

б) тот же механизм без избыточных связей (заменены

кинематические пары В и С).

и механизм превращается в пространственный. В этом случае формула Сомова-Малышева дает следующий результат:

W = 6n - 5p 1 , = 6·3-5·4=-2,

т.е. получается не механизм, а ферма, статически неопредели­ма. Число избыточных связей составит (т. к. в реальности W=l):q=l-(-2) = 3.

Избыточные связи в большинстве случаев следует устра­нять, изменяя подвижность кинематических пар.

Например, для рассматриваемого механизма (рис. 1.1, б), заменяя шарнир В двуподвижной кинематической парой (р 2 = 1), а шарнир С - трехподвижной (р 3 = 1), получим:

q = 1 - 6 ·3 + 5 ·2 + 4 ·1 + 3 ·1 = 0,

т.е. избыточных связей нет, и механизм статически определим.

Иногда избыточные связи умышленно вводят в состав меха­низма, например, для повышения его жесткости. Работоспособ­ность таких механизмов обеспечивается при выполнении опре­деленных геометрических соотношений. В качестве примера рассмотрим механизм шарнирного параллелограмма (рис. 1.2, а), у которого АВ//CD, ВС//AD; n = 3, p 1 = 4, W = 1 и q = 0.



Рис. 1.2. Шарнирный параллелограмм:

а) без пассивных связей,

б) с пассивными связями

Для повышения жесткости механизма (рис. 1.2, б) вводят дополнительное звено EF, причем при EF//ВС не вносится но­вых геометрических связей, движение механизма не изменяется и в реальности по-прежнему W = 1, хотя по формуле Чебышева имеем: W = 3 · 4 – 2 · 6 = 0, т.е. формально механизм получается статически неопределимым. Однако, если EF не параллельно ВС, движение станет невозможным, т.е. W действительно равно 0.

В соответствии с идеями Л.В. Ассура любой механизм образуется путем последовательного присоединения к механической системе с определенным движением (входным звеньям и стойке) кинематических цепей, удовлетворяющих условию, что степень их подвижности равна 0. Такие цепи, включающие только низшие кинематические пары 5-го класса, называютсягруппами Ассура .

Группа Ассура не может быть разложена на более мелкие группы, обладающие нулевой степенью подвижности.

Группы Ассура подразделяются на классы в зависимости от их строения.

Входное звено, образующее со стойкой низшую кинематическую пару, носит название механизма первого класса (рис 1.3). Степень подвижности этого механизма равна 1.

Рис 1.3. Механизмы первого класса

Степень подвижности группы Ассура равна 0

Из этого условия можно определить соотношение между числом низших кинематических пар пятого класса и числом звеньев, входящих в группу Ассура.

Отсюда очевидно, что число звеньев в группе должно быть четным, а число пар пятого класса является всегда кратным 3.

Группы Ассура подразделяются на классы и порядки. При сочетании n=2 и p 5 =3 образуются группы Ассура второго класса.

Кроме того, группы делятся на порядки. Порядок группы Ассура определяется числом элементов (внешних кинематических пар), которыми группа присоединяется к механизму.

Существуют 5 видов групп Ассура второго класса (табл.1.3).

Класс группы Ассура выше второго определяется числом внутренних кинематических пар, образующих наиболее сложный замкнутый контур.

При сочетании п=4 p 5 =6 образуются группы Ассура третьего и четвёртого классов (табл. 1.3). По видам эти группы не различаются.

Общий класс механизма определяется наивысшим классом групп Ассура, входящих в данный механизм.

Формула строения механизма показывает порядок присоединения групп Ассура к механизму первого класса.

Например, если формула строения механизма имеет вид

1 (1) 2 (2,3) 3 (4,5,6,7) ,

то это означает, что к механизму первого класса (звено 1 со стойкой) присоединены группа Ассура второго класса, включающая звенья 2 и 3 , и группа Ассура третьего класса, включающая звенья 4, 5, 6, 7. Наивысшим классом группы, входящей в состав механизма, является третий класс. Следовательно, имеем механизм третьего класса.

Кинематической парой называется подвижное соединение двух соприкасающихся звеньев обеспечивающее их определенное относительное движение. Элементами кинематической пары называют совокупность Поверхностей линий или точек по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую Пару. Чтобы пара существовала элементы входящих в нее звеньев должны находиться в постоянном контакте Т.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция N 2

Каким бы не был механизм машины он всегда состоит только из звеньев и кинематических пар.

Условия связи, налагаемые в механизмах на подвижные звенья, в теории машин и механизмов Принято называть кинематическими парами.

Кинематической парой называется подвижное соединение двух соприкасающихся звеньев, обеспечивающее их определенное относительное движение.

В табл. 2.1 приведены названия, рисунки, условные обозначения наиболее распространенных на практике кинематических пар, а также произведена их классификация.

Звенья при объединении их в кинематическую пару могут соприкасаться между собой по поверхностям, линиям и точкам.

Элементами кинематической пары называют совокупность Поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую Пару. В зависимости от вида контакта элементов кинематических пар различают высшие и низшие кинематические пары.

Кинематические пары, образованные элементами в виде линии или точки,называются высшими .

Кинематические пары, образованные элементами в виде поверхностей, называются низшими.

Чтобы пара существовала, элементы входящих в нее звеньев должны находиться в постоянном контакте, Т.е. быть замкнутыми. Замыкание кинематических пар может быть геометрически или силовым , Например, с помощью собственной массы, пружин и т.п..

Прочность, износостойкость и Долговечность кинематических пар зависят от их вида и конструктивного исполнения. Низшие пары более износостойкие, чем высшие. Это объясняется тем, что в низших Парах контакт элементов пар происходит по поверхности, а следовательно, при одинаковой нагрузке в ней возникают меньшие удельные давления, чем в высшей. Износ, при прочих равных условиях, Пропорционален удельному давлению, а поэтому низшие Пары изнашиваются Медленнее, Чем высшие. Поэтому с целью уменьшения износа в машинах предпочтительнее использование низших пар, однако часто применение высших кинематических пар позволяет значительно упростить структурные схемы машин, что снижает их Габариты и упрощает конструкцию. Поэтому правильный выбор кинематических пар является сложной инженерной задачей.

Кинематические Пары разделяют также по числу степеней свободы (подвижности) , которые она предоставляет соединенным посредством ее звеньям, или по числу условий связей (класс пары ), налагаемых парой на относительное движение соединяемых звеньев. При использовании такой классификации разработчики машин получают сведений о возможных относительных движениях звеньев и о характере взаимодействия силовых факторов между элементами пары.

Свободное звено, находящееся в общем случае в М - мерном пространстве, Допускающем П видов простейших движений, обладает числом степеней свобода! (Н ) или W - подвижно.

Так, если звено находится в трехмерном пространстве, допускающем шесть видов Простейших движений - три вращательных и три поступательных вокруг и вдоль осей X , V , Z , то говорят, что оно обладает шестью степенями свободы или имеет шесть обобщенных координат, или шестиподвижно. Если звено находится в двухмерном пространстве, допускающем три вида простейших движений - одно вращательное вокруг Z и два поступательных вдоль осей X и Y , то говорят, что оно имеет три степени свободы, или три обобщенные координаты, или оно трехподвижно и т. д..

Таблица 2.1

При объединении звеньев с помощью кинематических пар они лишаются степеней свободы. Значит, кинематические пары налагают на соединяемые ими звенья связи числом S .

В зависимости от числа степеней свободы, которым обладают в относительном движении звенья, объединенные в кинематическую пару, определяют подвижность пары (W =Н ). Если Н - число степеней свободы звеньев кинематической пары в относительном движении, to подвижность пары определится следующим образом:

где П - подвижность пространства, в котором.существует рассматриваемая пара; S - число налагаемых парой связей.

Следует заметить, что подвижность пары W , определенная по (2.1), зависит не от вида пространства, в котором она реализуется, а только от конструкции.

Например, вращательная (поступательная) (см, табл. 2.1) пара как в шести-, так и в трехподвижном пространстве, все равно останется одноподвижной, в первом случае на нее будет наложено 5 связей, а во втором случае - 2 связи, и, значит, будем иметь, соответственно:

для шестиподвижного пространства:

для трехподвижного пространства:

Как видим, подвижность кинематических пар не зависит от характеристик пространства, что является преимуществом данной классификации. Напротив, часто встречающееся деление кинематических пар на классы страдает тем, что класс пары зависит от Характеристик пространства, а значит, одна и та же пара в разных пространствах имеет разный класс. Это неудобно для практических целей, значит, такая Классификация кинематических пар нерациональна, поэтому ее лучше не применять.

Можно подобрать такую форму элементов пары, чтобы при одном независимом простейшем движений возникало второе - зависимое (производное). Примером такой кинематической пары является винтовая (табл. 2 . 1) . В этой паре вращательное движение винта (гайки) вызывает поступательное его (ее) перемещение вдоль оси. Такую пару следует отнести к одноподвижной, Так как в ней реализуется всего одно независимое простейшее Движение.

Кинематические соединения.

Кинематические пары, приведенные в табл. 2.1, просты и компактны. Они реализуют практически все, необходимые при создании механизмов простейшие относительные перемещения звеньев. Однако при создании машин и механизмов они применяются редко. Это обусловлено тем, что в точках соприкосновения звеньев, образующих пару, обычно возникают большие силы Трения. Это приводит к значительному износу элементов пары, а значит, к ее разрушению. Поэтому простейшую двухзвенную кинематическую цепь кинематической пары часто заменяют более длинными кинематическими цепями, Которые в совокупности реализуют то же самое относительное движение звеньев, что и заменяемая кинематическая пара.

Кинематическая цепь, предназначенная для замены кинематической пары, называется кинематическим соединением .

Приведем примеры кинематических цепей, для наиболее распространенных на практике вращательной, поступательной, винтовой, сферической и плоскость-плоскость кинематических пар.

Из табл. 2.1 видно, что простейшим аналогом вращательной кинематической пары является подшипник с телами качения. Аналогично, роликовые направляющие заменяют поступательную пару и т.д.

Кинематические соединения удобнее и надежнее в эксплуатации, выдерживают значительно большие силы (моменты) и позволяют механизмам работать при высоких относительных скоростях звеньев.

Основные виды механизмов.

Механизм Можно рассматривать как частный случай кинематической цепи, у которой, как минимум, одно звено обращено в стойку, а движение остальных звеньев определено заданным движением входных звеньев.

Отличительными особенностями кинематической цепи, представляющей механизм, являются подвижность и определенность движения ее звеньев относительно стойки.

Механизм может иметь несколько входных и одно выходное звено, в этом случае он называется суммирующим механизмом, и, наоборот, одно входное и несколько выходных, тогда он называется дифференцирующим механизмом.

По назначению Механизмы разделяются на направляющие и передаточные .

Передаточным механизмом называется устройство, предназначенное для воспроизведения заданной функциональной зависимости между перемещениями входного и выходного звеньев.

Направляющим механизмом называют механизм, у которого траектория определенной точки звена, образующего кинематические пары только с подвижными звеньями, совпадает с заданной кривой.

Рассмотрим основные виды механизмов, нашедших широкое применение в технике.

Механизмы, звенья которых образуют только низшие кинематические пары, называют шарнирно-рычажными . Эти механизмы нашли широкое применение благодаря тому, что они долговечны, надежны и просты в эксплуатации. Основным представителем таких Механизмов является шарнирный четырехзвенник (рис.2.1).

Названия механизмов обычно определяются по названиям их входного и выходного звеньев или характерного звена, входящего в их состав.

В зависимости от законов движения входного и выходного звеньев этот механизм может называться кривошипно-коромысловым, двойным кривошипным, двойным коромысловым, коромыслово-кривошипным.

Шарнирный четырехзвенник применяется в станкостроении, приборостроении, а также в сельскохозяйственных, пищевых, снегоуборочных и других машинах.

Если заменить в шарнирном четырехзвеннике вращательную пару, например D , на поступательную, то получим широко известный кривошипно-ползунный механизм (рис. 2.2).

Рис. 2.2. Различные виды кривошипно-ползунных механизмов:

1 – кривошип 2 - шатун; 3 - ползун

Кривошипно-ползунный (ползунно-кривошипный) механизм нашел широкое применение в компрессорах, насосах, двигателях внутреннего сгорания и других машинах.

Заменив в шарнирном четырехзвеннике вращательную пару С на поступательную, получим кулисный механизм (рис. 2.3).

На p и c .2.3, в кулисный механизм получен из шарнирного четырехзвенника путем замены в нем вращательных пар С и О на поступательные.

Кулисные механизмы нашли широкое применение в строгальных станках благодаря присущему им свойству асимметрии рабочего и холостого хода. Обычно у них длительный рабочий ход и быстрый, обеспечивающий возврат резца в исходное положение холостой ход.

Рис. 2.3. Различные виды кулисных механизмов:

1 – кривошип; 2 – камень; 3 – кулиса.

Большое применение шарнирно-рычажные механизмы нашли в робототехнике (рис. 2.4).

Особенностью этих механизмов является то, что они обладают большим числом степеней свободы, а значит, имеют много приводов. Согласованная работа приводов входных звеньев обеспечивает перемещение схвата по рациональной траектории и в заданное место окружающего пространства.

Широкое применение в технике получили кулачковые механизмы . При помощи кулачковых механизмов конструктивно Наиболее просто можно Получить практически любое движение ведомого звена по заданному закону,

В настоящее время существует большое число разновидностей кулачковых механизмов, некоторые из которых представлены на рис. 2.5.

Необходимый закон движения выходного звена кулачкового механизма достигается за счет придания входному звену (кулачку) соответствующей формы. Кулачок может совершать вращательное (рис. 2.5, а, б ), поступательное (рис. 2.5, в, г ) или сложное движение. Выходное звено, если оно совершает поступательное движение (рис.2.5, а, в ), называют толкателем, а если качательное (рис. 2.5, г ) - коромыслом. Для снижения потерь на трение в высшей кинематической паре В применяют дополнительное звено-ролик (рис. 2.5, г ).

Кулачковые механизмы применяются как в рабочих машинах, так и в разного рода командоаппаратах.

Очень часто в металлорежущих станках, прессах, различных приборах и измерительных устройствах применяются винтовые механизмы, простейший из которых представлен на рис. 2.6:

Рис. 2.6 Винтовой механизм:

1 - винт; 2 - гайка; А, В, С - кинематические пары

Винтовые механизмы обычно применяются там, где необходимо преобразовать вращательное движение в взаимозависимое поступательное или наоборот. Взаимозависимость движений устанавливается правильным подбором геометрических параметров винтовой пары В .

Клиновые механизмы (рис.2.7) применяются в различного вида зажимных устройствах и приспособлениях, в которых требуется создать большое усилие на выходе при ограниченных силах, действующих на входе. Отличительной особенностью этих механизмов являются простота и надежность конструкции.

Механизмы, в которых передача движения между соприкасающимися телами осуществляется за счет сил трения, называются фрикционными. Простейшие трехзвенные фрикционные механизмы представлены на рис. 2.8

Рис. 2.7 Клиновый механизм:

1, 2 - звенья; Л, В, С - кинематические пиры.

Рис. 2.8 Фрикционные механизмы:

а - фрикционный механизм с параллельными осями; б - фрикционный механизм с пересекающимися» осями; в - реечный фрикционный механизм; 1 - входной ролик (колесо);

2 – выходной ролик (колесо); 2"- рейка

Вследствие того что звенья 1 и 2 прижиты друг к другу, по линии касания между ними возникает сила трения, которая увлекает за собой ведомое звено 2 .

Широкое применение фрикционные передачи получили в приборах, лентопротяжных механизмах, вариаторах (механизмах с плавной регулировкой числа оборотов).

Для передачи вращательного движения по заданному закону между валами с параллельными, пересекающимися и перекрещивающимися осями применяются различного вида зубчатые механизмы . При помощи зубчатых колес можно осуществлять передачу движения как между валами с неподвижными осями , так и с перемещающимися в пространстве .

Зубчатые механизмы применяют для изменения частоты и направления вращения выходного звена, суммирования или разделения движений.

На рис. 2.9 показаны основные представители зубчатых передач с неподвижными осями.

Рис 2.9. Зубчатые передачи с неподвижными осями:

а - цилиндрическая; б - коническая; в - торцовая; г - реечная;

1 - шестерня; 2 - зубчатое колесо; 2 * рейка

Меньшее из двух зацепляющихся зубчатых колес называют шестерней , а большее - зубчатым колесом .

Рейка является частным случаем зубчатого колеса у которого радиус кривизны равен бесконечности.

Если в зубчатой передаче имеются зубчатые колесе с подвижными осями, то их называют планетарными (рис. 2.10):

Планетарные зубчатые передачи но сравнению с передачами с неподвижными осями позволяют передавать большие мощности и передаточные числа при меньшем числе зубчатых колес. Они также широко применяются при создании суммирующих и дифференциальных механизмов.

Передача движений между перекрещивающимися осями осуществляется с помощью червячной передачи (рис. 2.11).

Червячная передача получается из передачи винт-гайка путем продольной разрезки гайки и ее двукратного сворачивания во взаимно перпендикулярных плоскостях. Червячная передача обладает свойством самоторможения и позволяет в одной ступени реализовывать большие передаточные отношения.

Рис. 2.11. Червячная передача:

1 - червяк, 2 - червячное колесо.

К зубчатым механизмам прерывистого движения относятся также механизм мальтийского креста. На рис. З-Л"2. показан механизм четырех лопастного "мальтийского креста".

Механизм "мальтийского креста" преобразует непрерывное вращения ведущего эвена - кривошипа 1 с цевкой 3 в прерывистое вращение "креста" 2 , Цевка 3 без удара входит в радиальный паз "креста" 2 и поворачивает его на угол, где z -число пазов.

Для осуществления движения только в одном направлении применяют храповые механизмы. На рис.2,13 показан храповый механизм, состоящий из коромысла 1, храпового колеса 3 н собачек 3 и 4.

При качаниях коромысла 1 качающаяся собачка 3 сообщает вращение храповому колесу 2 только при движении коромысла против часовой стрелки. Для удержания колеса 2 от самопроизвольного поворота па часовой стрелке при движении коромысла против хода часов служит стопорная собачка 4 .

Мальтийские и храповые механизмы широко применяются в станках и приборах,

Если необходимо передать на относительно большое расстояние механическую энергию из одной точки пространства а другую, то применяют механизмы с гибкими звеньями.

В качестве гибких звеньев, передающих движение от одного эвена механизма к другому, используются ремни, канаты, цепи, нити, ленты, шарики и т.п.,

На рис. 2.14 приведена структурная схема простейшего механизма с гибким звеном.

Передачи с гибкими звеньями широко применяются в машиностроении, приборостроении и в других отраслях промышленности.

Выше были рассмотрены наиболее типичные простейшие механизмы. механизмов приводятся и специальной Литературе, па-свидетельствах и справочниках, например таких, как .

Структурные формулы механизмов.

Существуют общие закономерности в структуре (строении) самых различных механизмов, связывающие число степеней свободы W механизма с числом звеньев и числом и видом его кинематических пар. Эти закономерности носят название структурных формул механизмов.

Для пространственных механизмов в настоящее время наиболее распространена формула Малышева, вывод которой производится следующим образом.

Пусть в механизме, имеющем m звеньев (включая, стойку), - число одно-, двух-, трех-, четырех- и пятиподвижных пар. Число подвижных звеньев обозначим. Если бы все подвижные звенья были свободными телами, общее число степеней свободы было бы равно 6 n . Однако каждая одноподвижная пара V класса накладывает на относительное движение звеньев, образующих пару, 5 связей, каждая двухподвижная пара IV класса - 4 связи и т. д. Следовательно, общее число степеней свободы, равное шести, будет уменьшено на величину

где - подвижность кинематической пары, - число пар, подвижность которых равна i . В общее число наложенных связей может войти некоторое число q избыточных (повторных) связей, которые дублируют другие связи, не уменьшая подвижности механизма, а только обращая его в статически неопределимую систему . Поэтому число степеней свободы пространственного механизма, равное числу степеней свободы его подвижной кинематической цепи относительно стойки, определяется по следующей формуле Малышева:

или в краткой записи

(2.2)

при механизм – статически определимая система, при - статически неопределимая система.

В общем случае решение уравнения (2.2) - трудная задача, поскольку неизвестны W и q ; имеющиеся способы решений сложны и не рассматриваются в данной лекции. Однако в частном случае, если W , равное числу обобщенных координат механизма, найдено из геометрических соображений, из этой формулы можно найти число избыточных связей (см. Решетов Л. Н. Конструирование рациональных механизмов. М ., 1972)

(2.3)

и решить вопрос о статической определимости механизма; или же, зная, что механизм статически определимый, найти (или проверить) W .

Важно заметить, что в структурные формулы не входят размеры звеньев, поэтому при структурном анализе механизмов можно предполагать их любыми (в некоторых пределах). Если избыточных связей нет (), сборка механизма происходит без деформирования звеньев, последние как бы самоустанавливаются; поэтому такие механизмы называют самоустанавливающимися . Если избыточные связи есть (), то сборка механизма и движение его звеньев становятся возможными только при деформировании последних.

Для плоских механизмов без избыточных связей структурная формула носит имя П. Л. Чебышева, впервые предложившего её в 1869 году для рычажных механизмов с вращательными парами и одной степенью свободы. В настоящее время формула Чебышева распространяется на любые плоские механизмы и выводится с учетом избыточных связей следующим образом

Пусть в плоском механизме, имеющем т звеньев (включая стойку), -число подвижных звеньев, - число низших пар и - число высших пар. Если бы все подвижные звенья были свободными телами, совершающими плоское движение, общее число степеней свободы было бы равно З n . Однако каждая низшая пара накладывает на относительное движение звеньев, образующих пару, две связи, оставляя одну степень свободы, а каждая высшая пара накладывает одну связь, оставляя 2 степени свободы.

В число наложенных связей может войти некоторое число избыточных (повторных) связей, устранение которых не увеличивает подвижности механизма. Следовательно, число степеней свободы плоского механизма, т. е. число степеней свободы его подвижной кинематической цепи относительно стойки, определяется по следующей формуле Чебышева:

(2.4)

Если известно, отсюда можно найти число избыточных связей

(2.5)

Индекс «п» напоминает о том, что речь идет об идеально плоском механизме, или точнее о его плоской схеме, поскольку за счет неточностей изготовления плоский механизм в какой-то мере является пространственным.

По формулам (2.2)-(2.5) проводят структурный анализ имеющихся механизмов и синтез структурных схем новых механизмов.

Структурный анализ и синтез механизмов.

Влияние избыточных связей на работоспособность и надежность машин.

Как было сказано выше, при произвольных (в некоторых пределах) размерах звеньев механизм с избыточными связями () нельзя собрать без деформирования звеньев. Поэтому такие механизмы требуют повышенной точности изготовления, в противном случае в процессе сборки звенья механизма деформируются, что вызывает нагружение кинематических пар и звеньев значительными дополнительными силами (сверх тех основных внешних сил, для передачи которых механизм предназначен). При недостаточной точности изготовления механизма с избыточными связями трение в кинематических парах может сильно увеличиться и привести к заклиниванию звеньев, поэтому с этой точки зрения избыточные связи в механизмах нежелательны.

Что касается избыточных связей в кинематических цепях механизма, то при конструировании машин их следует стремиться устранять или же оставлять минимальное количество, если полное их устранение оказывается невыгодным из-за усложнения конструкции или по каким-либо другим соображениям. В общем случае оптимальное решение следует искать, учитывая наличие необходимого технологического оборудования, стоимость изготовления, требуемые ресурс работы и надежность машины. Следовательно, это весьма сложная задача для каждого конкретного случая.

Методику определения и устранения избыточных связей в кинематических цепях механизмов рассмотрим на примерах.

Пусть плоский четырехзвенный механизм с четырьмя одноподвижными вращательными парами (рис. 2.15, а ) за счет неточностей изготовления (например, вследствие непараллельности осей A и D ) оказался пространственным. Сборка кинематических цепей 4 , 3 , 2 и отдельно 4 , 1 не вызывается трудностей, а точки B , B ’ можно расположить на оси х . Однако собрать вращательную пару В , образованную звеньями 1 и 2 , можно будет, лишь совместив системы координат Bxyz и B ’ x ’ y ’ z ’ , для чего потребуется линейное перемещение (деформация) точки B ’ звена 2 вдоль оси х и угловые деформации звена 2 вокруг осей х и z (показаны стрелками). Это означает наличие в механизме трёх избыточных связей, что подтверждается и по формуле (2.3): . Что бы данный пространственный механизм был статически определимый, нужна его другая структурная схема, например изображённая на рис. 2.15, б , где Сборка такого механизма произойдёт без натягов, поскольку совмещение точек В и В’ будет возможно за счёт перемещения точки С в цилиндрической паре.

Возможен вариант механизма (рис. 2.15, в ) с двумя сферическими парами (); в этом случае, помимо основной подвижности механизма появляется местная подвижность - возможность вращения шатуна 2 вокруг своей оси ВС ; эта подвижность не влияет на основной закон движения механизма и может быть даже полезна с точки зрения выравнивания износа шарниров: шатун 2 может при работе механизма поворачиваться вокруг своей оси за счёт динамических нагрузок. Формула Малышева подтверждает, что такой механизм будет статически определимым:

Рис. 2.15

Наиболее простой и эффективный способ устранения избыточных связей в механизмах приборов - применение высшей пары с точечным контактом взамен звена с двумя низшими парами; степень подвижности плоского механизма в этом случае не меняется, поскольку, по формуле Чебышева (при):

На рис. 2.16, а,б,в дан пример устранения избыточных связей в кулачковом механизме с поступательно движущимся роликовым толкателем. Механизм (рис. 2.16, а ) - четырехзвенный (); кроме основной подвижности (вращение кулачка 1 ) имеется местная подвижность (независимое вращение круглого цилиндрического ролика 3 вокруг своей оси); следовательно, . Плоская схема избыточных связей не имеет (механизм собирается без натягов,). Если вследствие неточностей изготов-ления механизм считать пространственным, то при линейном контакте ролика 3 с кулачком 1 по формуле Малышева при получим, но при определенном условии. Кинематическая пара цилиндр - цилиндр (рис. 2.16, 6 ) при невозможности относительного поворота звеньев 1 , 3 вокруг оси z была бы трехподвижной парой. Если же такой поворот вследствие неточности изготовления имеет место, но мал, и практически сохраняется линейный контакт (при нагружении пятно контакта по форме близко к прямоугольнику), то данная

кинематическая пара будет четырехподвижной, следовательно, и

Рис.2.17

Снижая класс высшей пары путем применения бочкообразного ролика (пятиподвижная пара с точечным контактом, рис. 2.16, в ), получим при и - механизм статически определимый. Однако при этом следует помнить, что линейный контакт звеньев, хотя и требует при повышенной точности изготовления, позволяет передать большие нагрузки, чем точечный контакт.

На рис.2.16, г, д дан другой пример устранения избыточных связей в зубчатой четырехзвенной передаче (, контакт зубьев колес 1 , 2 и 2, 3 - линейный). В этом случае, по формуле Чебышева, - плоская схема избыточных связей не имеет; по формуле Малышева, - механизм статически неопределимый, следовательно, потребуется высокая точность изготовления, в частности для обеспечения параллельности геометрических осей всех трех колес.

Заменяя зубья промежуточного колеса 2 на бочкообразные (рис. 2.16, д ), получим статически определимый механизм.

1.2.1. Условия существования кинематических пар

Кинематические пары (КП) во многом определяют работоспособность машины, поскольку через них передаются усилия от одного звена к другому. Вследствие трения элементы пары находятся в напряженном состоянии и подвергаются износу. Поэтому при проектировании механизма большое значение имеет правильный выбор вида кинематической пары, её геометрической формы, размеров, конструкционных материалов и смазки.

Необходимы три условия для существования кинематической пары:

Наличие двух звеньев;

Возможность их относительного перемещения;

Постоянное соприкосновение этих звеньев.

С целью облегчения правильного выбора кинематической пары их классифицируют в зависимости от числа условий связи, по роду относительного движения звеньев, по характеру соприкосновения элементов кинематических пар и способу замыкания пары.

1.2.2. Классификация кинематических пар
в зависимости от числа условий связи

Твердое тело, свободно движущееся в пространстве, имеет 6 степеней свободы. Его возможные движения могут быть представлены как вращение вокруг трёх осей координат и поступательное движение вдоль этих же осей (рис. 2).

Рис. 2. Число степеней свободы любого тела в пространстве

Звенья, соединённые кинематическими парами, получают в той или иной степени ограничения в их относительном движении.

Ограничения, накладываемые на независимые движения звеньев, образующих кинематическую пару, называются условиями связи S .

Н = 6 – S ,

где Н – число степеней свободы звеньев;

S – число условий связей.

Если звено не входит в кинематическую пару, т. е. не связано с другим звеном, то у него нет ограничений движению: S = 0.

Если на материальные тела наложить 6 условий связи, они потеряют взаимную подвижность и получится жесткое соединение, т. е. кинематической пары не станет: S = 6.

Таким образом, число условий связи, наложенных на относительное движение каждого звена, может изменяться от 1 до 5.

Число условий связи кинематической пары определяет её класс (рис. 3).

Рис. 3. Классы кинематических пар

1.2.3. Классификация кинематических пар
по роду относительного движения звеньев

По роду относительного движения звеньев различают кинематические пары:

Поступательные;

Вращательные;

Винтовые.

Если одно звено движется относительно другого поступательно, то такая пара называется поступательной . На схеме поступательные пары могут изображаться следующим образом:

Если звенья, образующие пару, вращаются относительно друг друга, то такая кинематическая пара называется вращательной , и изображается она так:

Условное обозначение винтовой кинематической пары на схеме следующее:

1.2.4. Классификация кинематических пар
по характеру соприкосновения элементов пары

По характеру соприкосновения элементов кинематических пар различают пары низшие и высшие.

Низшиекинематическиепары –пары, в которых элементы касаются друг друга по поверхностям конечных размеров.

К ним относятся: поступательная (рис. 4), вращательная (рис. 5) и винтовая (рис. 6) пары. Низшие пары обратимы, т. е. характер движения не изменяется в зависимости от того, какое звено, входящее в пару, закреплено.

Рис. 4. Поступательная кинематическая пара

Высшие кинематические пары – это пары, элементы которых касаются друг друга по линии или в точке (рис. 7).

а ) б )

Рис. 7. Механизмы с высшей кинематической парой:

а ) контакт по линии или в точке (кулачок с толкателем);

б ) два зуба контактируют по линии (зубчатое зацепление)

Высшие пары необратимы. Точки контакта описывают различные кривые в зависимости от того, какое звено, входящее в пару, закреплено.

1.2.5. Классификация кинематических пар по способу замыкания

По способу замыкания (обеспечения контакта звеньев пары) различают кинематические пары с силовым и геометрическим замыканиями.

Силовое замыкание происходит за счёт действия сил веса или силы упругости пружины (рис. 8); геометрическое– за счёт конструкции рабочих поверхностей пары (рис. 9).

Рис. 8. Силовое замыкание кинематической пары

Рис. 9. Геометрическое замыкание кинематической пары

Основные виды механизмов

Принята следующая классификация механизмов:

а) по виду преобразования движения:

Редукторы (угловая скорость ведущего звена больше угловой скорости ведомого звена);

Мультипликаторы (угловая скорость ведущего звена меньше угловой скорости ведомого звена);

Муфты (угловая скорость ведущего звена равна угловой скорости ведомого звена).

б) по движению и расположению звеньев в пространстве:

Пространственные (все звенья движутся в разных, непараллельных плоскостях);

Плоские (все звенья движутся в одной плоскости).

в) по числу степеней подвижности механизма:

С одной степенью подвижности;

С несколькими степенями подвижности (интегральные – суммирующие, дифференциальные – разделяющие).

г) по виду кинематических пар:

С низшими кинематическими парами (все кинематические пары механизма – низшие);

С высшими кинематическими парами (хотя бы одна кинематическая пара – высшая).





error: Контент защищен !!