Понятие и классификация биообъектов. Иммобилизованные ферменты

Биообъекты: способы их создания и совершенствования. 1.1 Понятие «Биообъект» БО Биообъект – центральный и обязательный элемент биотехнологического производства, определяющий его специфику. Продуцент полный синтез целевого продукта, включающий ряд последовательных ферментативных реакцийБиокатализатор катализ определенной ферментативной реакции (или каскада), которая имеет ключевое значение для полученияцелевого продукта катализ определенной ферментативной реакции (или каскада), которая имеет ключевое значение для получения целевого продукта По производственным функциям:



Биообъекты 1) Макромолекулы: ферменты всех классов (чаще гидролазы и трансферазы); –в т.ч. в иммобилизированном виде (связанные с носителем) обеспечивающем многократность использования и стандартность повторяющихся производственных циклов ДНК и РНК – в изолированном виде, в составе чужеродных клеток 2) Микроорганизмы: вирусы (с ослабленной патогенностью используются для получения вакцин); клетки прокариоты и эукариоты –продуценты первичных метаболитов: аминокислот, азотистых оснований, коферментов, моно- и дисахаров, ферментов для заместительной терапии и т.д.); –продуценты вторичных метаболитов:антибиотики, алкалоиды, стероидные гормоны, и др. нормофлоры – биомасса отдельных видов микроорганизмов применяемые для профилактики и лечения дисбактериозов возбудители инфекционных заболеваний – источники антигенов для производства вакцин трансгенные м/о или клетки – продуценты видоспецифичных для человека белковых гормонов, белковых факторов неспецифического иммунитета и т. д. 3) Макроорганизмы высшие растения – сырье для получения БАВ; Животные - млекопитающие, птицы, рептилии, амфибии, членистоногие, рыбы, моллюски, человек Трансгенные организмы


Цели совершенствования БО: (применительно к производству) - увеличение образования целевого продукта; - снижение требовательности к компонентам питательных сред; - изменение метаболизма биообъекта, например снижение вязкости культуральной жидкости; - получение фагоустойчивых биообъектов; - мутации, ведущие к удалению генов, кодирующих ферменты. Методы совершенствования БО: Селекция спонтанных (природных) мутаций Индуцированный мутагенез и селекция Клеточная инженерия Генетическая инженерия


Селекция и мутагенез Спонтанные мутацииСпонтанные мутации –встречаются редко, –разброс по степени выраженности признаков невелик. индуцированный мутагенез: разброс мутантов по выраженности признаков больше. разброс мутантов по выраженности признаков больше. появляются мутанты с пониженной способностью к реверсии, т.е. со стабильно измененным признаком появляются мутанты с пониженной способностью к реверсии, т.е. со стабильно измененным признаком селекционная часть работы - отбор и оценка мутаций: Обработанную культуру рассеивают на ТПС и выращивают отдельные колонии (клоны) клоны сравнивают с исходной колонией по разным признакам: -мутанты, нуждающиеся в конкретном витамине, или аминокислоте; -мутантны, синтезирующие фермент расщепляющий определенный субстрат; -антибиотикорезистентные мутанты Проблемы суперпродуцентов: высоко продуктивные штаммы крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме не связаны с жизнеспособностью. мутантные штаммы требуют постоянного контроля при хранении: популяцию клеток высеивают на твердую среду и полученные из отдельных колоний культуры проверяют на продуктивность.


Совершенствование биообъектов методами клеточной инженерии Клеточная инженерия – «насильственный» обмен участками хромосом у прокариот или участками и даже целыми хромосомами у эукариот. В результате создаются неприродные биообъекты, среди которых могут быть отобраны продуценты новых веществ или организмы с ценными в практическом отношении свойствами. Возможно получение межвидовых и межродовых гибридных культур микроорганизмов, а также гибридных клеток между отдаленными в эволюционном отношении многоклеточными организмами.


Создание биообъектов методами генетической инженерии Генетическая инженерия –соединение фрагментов ДНК природного и синтетического происхождения или комбинацию in vitro с последующим введением полученных рекомбинантных структур в живую клетку для того, чтобы введенный фрагмент ДНК после включения его в хромосому либо реплицировался, либо автономно экспрессировался. Следовательно, вводимый генетический материал становится частью генома клетки. Необходимые составляющие генного инженера: а) генетический материал (клетку – хозяина); б) транспортное устройство – вектор, переносящий генетический материал в клетку; в) набор специфических ферментов - «инструментов» генной инженерии. Принципы и методы генной инженерии отработаны, прежде всего, на микроорганизмах; бактериях – прокариотах и дрожжах – эукариотах. Цель: получение рекомбинантных белков – решение проблемы дефицита сырья.


8 Слагаемые биотехнологического производства Главные особенности БТ производства: 1.два активных и взаимосвязанных представителя средств производства – биообъект и «ферментер»; 2.чем выше темп функционирования биообъекта, тем более высокие требования предъявляются к аппаратурному оформлению процессов; 3.оптимизации подвергают и биообъект и аппараты биотехнологического производства Цели осуществления биотехнологии: 1.основной этап производства ЛС – получение биомассы (сырья, ЛВ); 2.один или несколько этапов производства ЛС (в составе химического или биологического синтеза) - биотрансформация, разделение рацематов и т.п.; 3.полный процесс производства ЛС – функционирование биообъекта на всех стадиях создания препарата. Условия осуществления биотехнологий при производстве ЛП 1.Генетически обусловленная способность био-объекта к синтезу или специфической трансформации связанной с получением БАВ или ЛС; 2.Защищенность био-объекта в биотехнологической системе от внутренних и внешних факторов; 3.Обеспечение функционирующих в биотехнологических системах био- объектов пластическим и энергетическим материалом в объемах и последовательности, гарантирующих нужную направленность и темп биотрансформации.




КЛАССИФИКАЦИЯ ПРОДУКТОВ БИОТЕХНОЛОГИЧЕСКИХ ПРОИЗВОДСТВ типы продуктов получаемых БТ методами: –интактные клетки –одноклеточные организмы используют для получения биомассы –клетки (в т.ч. иммобилизованные) для биотрансформации. Биотрансформация - реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. (производство ам-к-т, а/б, стероидов и др.) низкомолекулярные продукты метаболизма живых клеток: –Первичные метаболиты необходимы для роста клеток. (структурные единицы биополимеров ам-к-ты, нуклеотиды, моносахариды, витамины, коферменты, органические к-ты) –Вторичные метаболиты (а/б, пигменты, токсины) НМС, не требующиеся для выживания клеток и образующиеся по завершении фазы их роста. Динамика изменения биомассы и образования первичных (А) и вторичных (Б) метаболитов в процессе роста организма: 1 биомасса; 2 продукт




Стадии БТ производства 1.Подготовка сырья (питательной среды) субстрата с заданными свойствами (рН, температура, концентрация) 2.Подготовка биообъекта: посевной культуры или фермента (в т.ч. иммобилизованного). 3.Биосинтез, биотрансформация (ферментация) - образование целевого продукта за счет биологического превращения компонентов питательной среды в биомассу, затем, если это необходимо, в целевой метаболит. 4.Выделение и очистка целевого продукта. 5.Получение товарной формы продукта 6.Переработка и утилизация отходов (биомассы, культуральной жидкости и т.п.) Основные типы биотехнологических процессов Биоаналогичные Производство метаболитов – химических продуктов метаболической активности, первичные - аминокислоты, полисахариды вторичные - алкалоиды, стероиды, антибиотики Многосубстратные конверсии (обработка сточных вод, утилизация лигноцеллюлозных отходов) Односубстратные конверсии (превращение глюкозы во фруктозу, D-сорбита в L- сорбозу при получении вит С) Биохимические производство клеточных компонентов (ферменты,нуклеиновые кислоты) Биологические Производство биомассы (белок одноклеточных)


1.Вспомогательные операции: 1.1. Подготовка посевного материала (инокулята): засев пробирок, качалочных колб (1-3 сут), инокулятора (2-3 % 2-3 сут), посевного аппарата (2-3сут). Кинетические кривые роста 1.индукционный период (лаг-фаза) 2.фаза экспоненциального роста (накопление биомассы и продуктов биосинтеза) 3.фаза линейного роста (равномерный рост культуры) 4.фаза замедленного роста 5.стационарная фаза (постоянство жизнеспособных особей 6.Фаза старения культуры (отмирания) N t Подготовка питательной среды выбор и реализация рецептуры среды, стерилизация гарантирующая сохранность пластических и энергетических компонентов, в исходном количестве и качестве. Особенностью биообъектов является потребность в многокомпонентных энергетических и пластических субстратах, содержащих О, С, N, Р, Н – элементы необходимые для энергетического обмена и синтеза клеточных структур.


Содержание биогенных элементов в различных биообъектах, в % Микро- организмы элемент углеродазотфосфоркислородводород бактерии50,412,34,030,56,8 дрожжи47,810,44,531,16,5 грибы47,95,23,540,46,7 Элементный состав биомассы по химическим элементам позволяет сделать для каждого биообъекта описание Существует количественная закономерность влияния концентрации элементов питательной среды на скорость роста биомассы, равно как и взаимовлияние тех же элементов на удельную скорость роста биообъектов С DN/ dT 123 C – концентрация лимитирующего компонента DN/dT – скорость роста микроорганизмов. 1 -область лимитирования, 2- область оптимального роста, 3 – область ингибирования.


1.3. Стерилизация питательной среды необходимо полностью исключить контаминантную флору и сохранить биологическую полноценность субстратов чаще автоклавирование, реже химические и физические воздействия. Эффективность выбранного режима стерилизации оценивают по константе скорости гибели микроорганизмов (берется из специальных таблиц) умноженная на продолжительность стерилизации Подготовка ферментера Стерилизация оборудования острым паром. Герметизация с особым вниманием к «слабым» точкам тупиковые штуцера малого диаметра, штуцера датчиков контрольно-измерительной аппаратуры. Выбор ферментера осуществляется с учетом критериев дыхания биообъекта, теплообмена, транспорт и превращения субстрата в клетке, скорость роста единичной клетки, время ее размножения и т.п.


Ферментация – основной этап биотехнологического процесса Ферментация – это вся совокупность операций от внесения микробов в подготовленную и нагретую до необходимой температуры среду до завершения биосинтеза целевого продукта или роста клеток. Весь процесс протекает в специальной установке – ферментере. Все биотехнологические процессы можно разделить на две большие группы - периодические и непрерывные. При периодическом способе производства простерилизованный ферментер заполняется питательной средой, часто уже содержащей нужные микроорганизмы. Биохимические процессы в этом ферментере продолжаются от нескольких часов до нескольких дней. При непрерывном способе подача равных объемов сырья (питательных веществ) и отвод культуральной жидкости, содержащей клетки продуцента и целевой продукт осуществляется одновременно. Такие ферментационные системы характеризуются как открытые.





По объёму: –лабораторные 0, л, –пилотные 100л -10 м3, –промышленные м3 и более. критерии выбора ферментера: –теплообмен, –скорость роста единичной клетки, –Тип дыхания биообъекта, –Вид транспорта и превращения субстрата в клетке –время размножения отдельной клетке. Аппаратурное оформление биотехнологического процесса - ферментеры:





Biostat A plus - автоклавируемый ферментер со сменными сосудами (рабочий объем 1,2 и 5 л) для культивирования микроорганизмов и культур клеток и является полностью масштабируемым при переходе к большим объемам. Единый корпус с интергрированным оборудованием измерения и управления, насосами, системой температурного контроля, подачи газа и мотором Ноутбук с заранее установленным Windows совместимым программным обеспечением MFCS / DA для управления процессами ферментации и их документирования Лабораторный (схема)


Параметры, влияющие на биосинтез (физически, химические, биологические) 1. Температура 2. Число оборотов мешалки (для каждого м/о (микроорганизмы) – разное число оборотов, разные 2х, 3х, 5-ти ярусные мешалки). 3. Расход подаваемого на аэрацию воздуха. 4. Давление в ферментере 5. рН среды 6. Парциальное давление растворенного в воде кислорода (количество кислорода) 7. Концентрация углекислого газа при выходе из ферментера 8. Биохимические показатели (потребление питательных веществ) 9. Морфологические показатели (цитологические) развитее клеток м/о, т.е. надо следить в процессе биосинтеза за развитием м/о 10. Наличие посторонней микрофлоры 11. Определение в процессе ферментации биологической активности Биосинтез БАВ (биологически активные вещества) в условиях производства


2. Основные операции: 2.1. Стадия биосинтеза, где в максимальной степени используются возможности биообъекта для получения лекарственного продукта (накапливается внутри клетки или секретируется в культуральную среду) Стадия концентрирования, одновременно предназначена для удаления баласта Стадия очистки, реализующая за счет повтора однотипных операций или за счет набора различных препаративных приемов (ультрафильтрация, экстракция, сорбция, кристаллизация и т. п) повышение удельной специфической активности лекарственного продукта Стадия получения конечного продукта (субстанции или готовой лекарственной формы) с последующими операциями фасовки и упаковки.


Питательная среда Разделение Культуральная жидкость Клетки Концентрирование Выделение и очистка метаболитов Дезинтеграция убитых клеток Биомасса убитых клеток Стабилизация продукта Биомасса живых клеток Обезвоживание Стабилизация продукта Применение Хранение Живой продуктСухой продукт Живой продукт Сухой продукт Живой продукт Сухой продукт Культивирование (ферментация) Подготовка инокулята Схема биотехнологического производства




Фармацевтические препараты требуют высокой степени чистоты Стоимость очистки тем выше, чем ниже концентрация вещества в клетках. Этапы очистки: 1. Сепарация. 2. Разрушение клеточных оболочек (дезинтеграция биомассы) 3. Отделение клеточных стенок. 4. Отделение и очистка продукта. 5. Тонкая очистка и разделение препаратов. 27


Этапы очистки Этап 1. СЕПАРАЦИЯ - отделение массы продуцента от жидкой фазы. Передвароительно для повышения эффективности может проводиться: изменение рН, нагревание, добавление коагулянтов белков или флокуллянтов. СПОСОБЫ СЕПАРАЦИИ 1. Флотация (буквально – плавание на поверхности воды) – разделение мелких частиц и выделение капель дисперсной фазы из эмульсий. Основана на различной смачиваемости частиц (капель) жидкостью (преимущественно водой) и на их избирательном прилипании к поверхности раздела, как правило, жидкость – газ (очень редко: твердые частицы – жидкость). Основные виды флотации: пенная (культуральную жидкость с биомассой микроорганизмов непрерывно вспенивают воздухом, подаваемым снизу вверх под давлением, клетки и их агломераты «прилипают» к пузырькам тонкодиспергированного воздуха и всплывают вместе с ними, собираясь в специальном отстойнике) масляная пленочная. 28


СПОСОБЫ СЕПАРАЦИИ 2. Фильтрация - используется принцип задержки биомассы на пористой фильтрующей перегородке. Используются фильтры: однократного и многократного использования; периодического и непрерывного действия (с автоматическим удалением слоя биомассы, забивающего поры); барабанные, дисковые, ленточные, тарелочные, карусельные вакуум-фильтры, фильтры-прессы различной конструкции, мембранные фильтры. 29


3. Физическое осаждение. Если биомасса содержит заметных количеств целевого продукта, она осаждается добавлением извести или других твердых компонентов, увлекающих клетки или мицелий на дно. 4. Центрифугирование. Осаждение взвешенных частиц происходит под действием центробежной силы с образованием 2 фракций: биомассы (твердая) и культуральной жидкости. «-»: необходимо дорогостоящее оборудование; «+»: позволяет максимально освободить культуральную жидкость от частиц; Цетрифугирование и фильтрация могут проходить одновременно в фильтрационных центрифугах. Высокоскоростное центрифугирование разделяет клеточные компоненты по размеру: более крупные частицы при центрифугировании движутся быстрее. 30 СПОСОБЫ СЕПАРАЦИИ


Этап 2. РАЗРУШЕНИЕ КЛЕТОЧНЫХ ОБОЛОЧЕК (ДЕЗИНТЕГРАЦИЯ БИОМАССЫ) Стадия используется, если искомые продукты находятся внутри клеток продуцента. МЕТОДЫ ДЕЗИНТЕГРАЦИИ механические, химические комбинированные. Физические методы - обработка ультразвуком, вращение лопасти или вибратора, встряхивание со стеклянными бусами, продавливание через узкое отверстие под давлением, раздавливание замороженной клеточной массы, растирание в ступке, осмотический шок, замораживание- оттаивание, декомпрессия (сжатие с последующим резким снижением давления). «+»: экономичность методов. «-»: неизбирательность методов, обработка может снижать качество получаемого продукта. 31


МЕТОДЫ ДЕЗИНТЕГРАЦИИ Химические и химико-ферментативные методы - клетки могут быть разрушены толуолом или бутанолом, антибиотиками, ферментами. «+»: более высокая избирательность методов Примеры: -клетки грамотрицательных бактерий обрабатывают лизоцимом в присутствии этилендиаминтерауксусной кислоты или других детергентов, -клетки дрожжей – зимолиазой улитки, ферментами грибов, актиномицетов. 32


ЭТАП 4. ОТДЕЛЕНИЕ И ОЧИСТКА ПРОДУКТА Выделение целевого продукта из культуральной жидкости или из гомогената разрушенных клеток проводят путем его осаждения, экстракции илииадсорбции. Осаждение: физическое (нагревание, охлаждение, разбавление, концентрирование); химическое (с помощью неорганических и органических веществ - этанол, метанол, ацетон, изопропанол). Механизм осаждения органическими веществами: снижение диэлектрической постоянной среды, разрушение гидратного слоя молекул. Высаливание: Механизм высаливания: гидратируются диссоциирующие ионы неорганических солей. Реагенты: сульфат аммония, сульфаты натрия, магния, фосфат калия. 33


Экстракция – процесс избирательного извлечения одного или нескольких растворимых компонентов из твердых тел и растворов с помощью жидкого растворителя – экстрагента. Типы экстракции: Твердо-жидкостная (вещество из твердой фазы переходит в жидкую) - например, хлорофилл из спиртовой вытяжки переходит в бензин Жидко-жидкостная (вещество переходит из одной жидкости в другую (извлечение антибиотиков, витаминов, каротиноидов, липидов). Экстрагенты: фенол, бензиловый спирт, хлороформ, жидкий пропанили бутан и др. Способы повышения эффективности экстракции: повторная экстракция свежим экстрагентом; выбор оптимального растворителя; нагревание экстрагирующего агента или экстрагируемой жидкости; понижением давления в аппарате для экстракции. Для экстракции хлороформом в лабораторных условиях используется аппарат «Сокслет», что позволяет многократно использовать растворитель. 34


ЭТАП 4. ОТДЕЛЕНИЕ И ОЧИСТКА ПРОДУКТА (продолжение) Адсорбция – частный случай экстракции, когда экстрагирующий агент является твердым телом - идет по ионообменному механизму. Адсорбенты: иониты на основе целлюлозы: катионит – карбоксиметилцеллюлоза (КМЦ); анионит – диэтиламиноэтилцеллюлоза (ДЭАЭ), сефадексы на основе декстрана и т.д. 35


МЕТОДЫ ТОНКОЙ ОЧИСТКИ И РАЗДЕЛЕНИЯ ПРЕПАРАТОВ Хроматография (от греч. chroma – цвет, краска и -графия) – физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами – неподвижной и подвижной (элюент), протекающей через неподвижную. Виды хроматографии по технике выполнения: колоночная - разделение веществ проводится в специальных колонках плоскостная: -тонкослойная (ТСХ) – разделение проводится в тонком слое сорбента; -бумажная – на специальной бумаге. 36


Для крупномасштабного отделения и очистки продуктов биотехнологических процессов применимы: аффинная преципитация - лиганд прикрепляют к растворимому носителю, при добавлении смеси, содержащей соответствующий белок, образуется его комплекс с лигандом, который выпадает в осадок сразу после его формирования или после дополнения раствора электролитом. аффинное разделение - основано на применении системы, содержащей два водорастворимых полимера – наиболее высокоэффективный из аффинных методов очистки. Гидрофобная хроматография основана на связывании белка в результате взаимодействия между алифатической цепью адсорбента и соответствующим гидрофобным участком на поверхности белковой глобулы. Система аффинной очистки рекомбинтных белков Profinia. 37


Электрофорез – метод разделения белков и нуклеиновых кислот в свободном водном растворе и пористом матриксе, в качестве которого можно использовать полисахариды, например, крахмал или агарозу. Модификацией метода является электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН-ПААГ) 38 Gel electrophoresis is a common method for separating protein or DNA Гель-электрофорез - распространенняй метод разделения белков или ДНК



Микроорганизмы как объекты биотехнологии. Классификация. Характеристика.

Бактерии чрезвычайно разнообразны по условиям обитания, приспособляемости, типам питания и биоэнергообразования, по отношению к макроорганизмам - животным и растениям. Наиболее древние формы бактерий - архебактерии способны жить в экстремальных условиях (высокие температуры и давления, концентрированные растворы солей, кислые растворы). Эубактерии (типичные прокариоты, или бактерии) более чувствительны к условиям окружающей среды.

По типу питания бактерии делятся по источнику энергии:

· фототрофы, использующие энергию солнечного света;

· хемоавтотрофы, использующие энергию окисления неорганических веществ (соединений серы, метана, аммиака, нитритов, соединений двухвалентного железа и др.);

По типу окисления вещества:

· органотрофы, получающие энергию при разложении органических веществ до минеральных веществ; эти бактерии - основные участники круговорота углерода, к этой же группе относятся бактерии, использующие энергию брожения;

· литотрофы (неорганические вещества);

По типу источников углерода:

· гетеротрофные – используют органические вещества;

· афтотрофные – используют газ;

Для обозначения типа питания используется:

1. природа источника энергии фото- или хемо-;

2. Доноры электронов лито- или органо-;

3. Источники углерода афто- и гетеро-;

И заканчивается термин словами трофия. 8 различных типов питания.

Высшие животные и растение склоны к 2 типам питания:

1) Хемоорганогетеротрофия (животные)

2) Фотолитоафтотрофия (растения)

У микроорганизму представлены все типы питания при чем они могут переходить с одного на другой в зависимости от существования

Существует отдельный вид питания:

Бактерии являются удобным объектом для генетических исследований. Наиболее изученной и широко применяемой в генно-инженерных исследованиях является кишечная палочка Escherichia coli (Е. coli), обитающая в кишечнике человека.

Организация и структура биотехнологических производств. Отличительные особенности биотехнологического производства от традиционных видов технологий. Преимущества и недостатки биотехнологических производств по сравнению с традиционными технологиями.

Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса.

Существует 5 стадий биотехнологического производства.

Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными.

Основная цель биотехнологии - промышленное использование биологи­ческих процессов и агентов на основе получения высокоэффективных форм мик­роорганизмов, культур клеток и тканей растений и животных с заданными свой­ствами. Биотехнология возникла на стыке биологических, химических и техниче­ских наук.

Биотехнологический процесс - включает ряд этанов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов.

Биотехнологические процессы могут быть основаны на периодическом или непрерывном культивировании.

Во многих странах мира биотехнологии придается первостепенное значе­ние. Это связано с тем, что биотехнология имеет ряд существенных преиму­ществ перед другими видами технологий, например, химической.

1). Это, прежде всего, низкая энергоемкость. Биотехнологические процес­сы совершаются при нормальном давлении и температурах 20-40° С.

2). Биотехпологическое производство чаще базируется на использовании стандартного однотипною оборудования. Однотипные ферменты применяются для производства аминокислот, витаминов; ферментов, антибиотиков.

3). Биотехнологические процессы несложно сделать безотходными. Мик­роорганизмы усваивают самые разнообразные субстраты, поэтому отходы одного какого-то производства можно превращать в ценные продукты с помощью мик­роорганизмов в ходе другого производства.

4). Безотходность биотехнологических производств делает их экологиче­ски наиболее чистыми

5). Исследования в области биотехонологии не требуют крупных капи­тальных вложений, для их проведения не нужна дорогостоящая аппаратура.

К первоочередным задачам современной биотехнологии относятся -создание и широкое освоение:

1)новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста, антител);

2)микробиологических средств защиты растений от болезней и вредите­

лей, бактериальных удобрений и регуляторов роста растений, новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;

3)ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, кормовых антибиотиков) для по­вышения продуктивности животноводства;

4)новых технологий получения хозяйственно-ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;

5)технологий глубокой и эффективной переработки сельскохозяйствен­ных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

Традиционная (обычная) технология представляет собой разработки, отражающие средний уровень производства, достигнутый большинством производителей продукции в данной отрасли. Такая технология не обеспечивает ее покупателю значительных технико-экономических преимуществ и качество продукции по сравнению с аналогичной продукцией ведущих производителей, и рассчитывать на дополнительную (сверх средней) прибыль в данном случае не приходится. Ее преимуществами для покупателя являются сравнительно невысокая стоимость и возможность приобретения проверенной в производственных условиях технологии. Традиционная технология создается, как правило, в результате устаревания и широкомасштабного распространения прогрессивной технологии. Продажа такой технологии обычно осуществляется по ценам, компенсирующим продавцу издержки на ее подготовку и получение средней прибыли.

Преимущества биотехнологических процессов по сравнению с химической технологией биотехнология имеет следующие основные преимущества:

·возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

·проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

·микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы

·в качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

·биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

·как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

Биотехнологическая стадия

Основной стадией является собственно биотехнологическая стадия, на которой с использованием того или иного биологического агента происходит преобразование сырья в тот или иной целевой продукт.

Обычно главной задачей биотехнологической стадии является получение определенного органического вещества.

Биотехнологическая стадия включает в себя:

Ферментация - процесс, осуществляемый с помощью культивирования микроорганизмов.

Биотрансформация - процесс изменения химической структуры вещества под действием ферментативной активности клеток микроорганизмов или готовых ферментов.

Биокатализ - химические превращения вещества, протекающие с использованием биокатализаторов-ферментов.

Биоокисление - потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

Метановое брожение - переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

Биокомпостирование - снижение содержания вредных органических веществ ассоциацией микроорганизмов в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.

Биосорбция - сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закрепленными на специальных твердых носителях.

Бактериальное выщелачивание - процесс перевода нерастворимых в воде соединений металлов в растворенное состояние под действием специальных микроорганизмов.

Биодеградация - деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

Обычно биотехнологическая стадия имеет в качестве выходных потоков один жидкостной поток и один газовый, иногда только один - жидкостной. В случае, если процесс протекает в твердой фазе (например, созревание сыра или биокомпостирование отходов), выходом является поток переработанного твердого продукта.

Подготовительные стадии

Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии.

На стадии подготовки могут быть использованы следующие процессы.

Стерилизация среды - для асептических биотехнологических процессов, где нежелательно попадание посторонней микрофлоры.

Подготовка и стерилизация газов (обычно воздуха), необходимых для протекания биотехнологического процесса. Чаще всего подготовка воздуха заключается в очистке его от пыли и влаги, обеспечении требуемой температуры и очистке от присутствующих в воздухе микроорганизмов, включая споры.

Подготовка посевного материала. Очевидно, что для проведения микробиологического процесса или процесса культивирования изолированных клеток растений или животных необходимо подготовить и посевной материал - предварительно выращенное малое по сравнению с основной стадией количество биологического агента.

Подготовка биокатализатора. Для процессов биотрансформации или биокатализа необходимо предварительно подготовить биокатализатор - либо фермент в свободном или закрепленном на носителе виде, либо биомассу микроорганизмов, выращенную предварительно до состояния, в котором проявляется ее ферментативная активность

Предварительная обработка сырья. Если сырье поступает в производство в виде, непригодном для непосредственного использования в биотехнологическом процессе, то проводят операцию по предварительной подготовке сырья. Например, при получении спирта пшеницу сначала дробят, а затем подвергают ферментативному процессу "осахаривания", после чего осахаренное сусло на биотехнологической стадии путем ферментации превращается в спирт.

Очистка продукта

Задача этой стадии - убрать примеси, сделать продукт максимально чистым.

Хроматография - процесс, напоминающий адсорбцию.

Диализ - процесс, в котором через полупроницаемую перегородку могут проходить низкомолекулярные вещества, а высокомолекулярные остаются.

Кристаллизация. Этот процесс базируется на различной растворимости веществ при разных температурах.

Концентрирование продукта

Дальнейшая задача - обеспечить его концентрирование.

На стадии концентрирования применяют такие процессы, как выпаривание, сушка, осаждение, кристаллизация с фильтрацией получившихся кристаллов, ультрафильтрация и гиперфильтрация или нанофильтрация, обеспечивающие как бы "отжим" растворителя из раствора.

Очистка стоков и выбросов

Очистка этих стоков и выбросов - специальная задача, которая обязательно должна решаться в наше экологически неблагополучное время. По существу очистка стоков - это отдельное биотехнологическое производство, имеющее свои подготовительные стадии, биотехнологическую стадию, стадию отстаивания биомассы активного ила и стадию дополнительной очистки стоков и переработки осадка.

Виды биологических объектов применяемых в биотехнологии, их классификация и характеристика. Биологические объекты животного происхождения. Биологические объекты растительного происхождения.

К объектам биотехнологии относятся: организованные внеклеточные частицы (вирусы), клетки бактерий, грибов, простейшие организмы, ткани грибов, растений, животных и человека, ферменты и ферментные компоненты, биогенные молекулы нуклеиновой кислоты, лектины, цитокинины, первичные и вторичные метаболиты.

В настоящее время большинство биообъектов биотехнологии представляется представителями 3-х надцарств:

1) Acoryotac – акориоты или безъядерные;

2) Procaryotac – прокариоты или предъядерные;

3) Eucaryotac – эукариоты или ядерные.

Представляются 5-ю царствами: к акариотам относят вирусы (неклеточная организованная частица); к прокариотам относят бактерии (морфологическая элементарная единица); к эукариотам относят грибы, растения и животные. Тип кодирование генетической информации ДНК (для вирусов ДНК или РНК).

Бактрии имеют клеточную организацию, но при этом материал ядра не отделен от цитоплазмы ни какими мембранами и не связан ни с какими белками. В основном бактерии одноклеточные их размер не превышает 10 микрометров. Все бактерии делятся на архиобактерии и эубактерии.

Грибы (Mycota) являются важными биотехнологическими объектами и продуцентами ряда важнейших соединений пищевых продуктов и добавок: антибиотики, растительные гормоны, красители, грибной белок, сыры различных типов. Микромицеты неформируют плодового тела, а макромицеты формируют. Имеют признаки животных и растений.

Растения (Plantae). Известно около 300 тысяч видов растений. Это дифференцированные органические растения, составные части которых ткани (мериместентные, покровные, проводимые, механические, основные и секреторные). К делению способны только мириместентные ткани. Любой вид растения при определенных условиях может давать неорганизованную клеточную массу делящихся клеток – каллус. Важнейшими биообъектами являются протопласты растительных клеток. Они лишены клеточной стенки. Используются в клеточной инженерии. Часто используют водоросли. Из них получают агар-агар и альгинаты (полисахариды, используемые для приготовления микробиологических сред).

Животные (Animalia). В биотехнологии широко применяются такие биообъекты как клетки различных животных. Кроме клеток высших животных используются клетки простейших животных. Клетки высших животных используются для получения рекомбинантной ДНК и для проведения токсикологических исследований.

Биообъекты: способы их создания и совершенствования. 1.1 Понятие «Биообъект» БО Биообъект – центральный и обязательный элемент биотехнологического производства, определяющий его специфику. Продуцент полный синтез целевого продукта, включающий ряд последовательных ферментативных реакцийБиокатализатор катализ определенной ферментативной реакции (или каскада), которая имеет ключевое значение для полученияцелевого продукта катализ определенной ферментативной реакции (или каскада), которая имеет ключевое значение для получения целевого продукта По производственным функциям:



Биообъекты 1) Макромолекулы: ферменты всех классов (чаще гидролазы и трансферазы); –в т.ч. в иммобилизированном виде (связанные с носителем) обеспечивающем многократность использования и стандартность повторяющихся производственных циклов ДНК и РНК – в изолированном виде, в составе чужеродных клеток 2) Микроорганизмы: вирусы (с ослабленной патогенностью используются для получения вакцин); клетки прокариоты и эукариоты –продуценты первичных метаболитов: аминокислот, азотистых оснований, коферментов, моно- и дисахаров, ферментов для заместительной терапии и т.д.); –продуценты вторичных метаболитов:антибиотики, алкалоиды, стероидные гормоны, и др. нормофлоры – биомасса отдельных видов микроорганизмов применяемые для профилактики и лечения дисбактериозов возбудители инфекционных заболеваний – источники антигенов для производства вакцин трансгенные м/о или клетки – продуценты видоспецифичных для человека белковых гормонов, белковых факторов неспецифического иммунитета и т. д. 3) Макроорганизмы высшие растения – сырье для получения БАВ; Животные - млекопитающие, птицы, рептилии, амфибии, членистоногие, рыбы, моллюски, человек Трансгенные организмы


Цели совершенствования БО: (применительно к производству) - увеличение образования целевого продукта; - снижение требовательности к компонентам питательных сред; - изменение метаболизма биообъекта, например снижение вязкости культуральной жидкости; - получение фагоустойчивых биообъектов; - мутации, ведущие к удалению генов, кодирующих ферменты. Методы совершенствования БО: Селекция спонтанных (природных) мутаций Индуцированный мутагенез и селекция Клеточная инженерия Генетическая инженерия


Селекция и мутагенез Спонтанные мутацииСпонтанные мутации –встречаются редко, –разброс по степени выраженности признаков невелик. индуцированный мутагенез: разброс мутантов по выраженности признаков больше. разброс мутантов по выраженности признаков больше. появляются мутанты с пониженной способностью к реверсии, т.е. со стабильно измененным признаком появляются мутанты с пониженной способностью к реверсии, т.е. со стабильно измененным признаком селекционная часть работы - отбор и оценка мутаций: Обработанную культуру рассеивают на ТПС и выращивают отдельные колонии (клоны) клоны сравнивают с исходной колонией по разным признакам: -мутанты, нуждающиеся в конкретном витамине, или аминокислоте; -мутантны, синтезирующие фермент расщепляющий определенный субстрат; -антибиотикорезистентные мутанты Проблемы суперпродуцентов: высоко продуктивные штаммы крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме не связаны с жизнеспособностью. мутантные штаммы требуют постоянного контроля при хранении: популяцию клеток высеивают на твердую среду и полученные из отдельных колоний культуры проверяют на продуктивность.


Совершенствование биообъектов методами клеточной инженерии Клеточная инженерия – «насильственный» обмен участками хромосом у прокариот или участками и даже целыми хромосомами у эукариот. В результате создаются неприродные биообъекты, среди которых могут быть отобраны продуценты новых веществ или организмы с ценными в практическом отношении свойствами. Возможно получение межвидовых и межродовых гибридных культур микроорганизмов, а также гибридных клеток между отдаленными в эволюционном отношении многоклеточными организмами.


Создание биообъектов методами генетической инженерии Генетическая инженерия –соединение фрагментов ДНК природного и синтетического происхождения или комбинацию in vitro с последующим введением полученных рекомбинантных структур в живую клетку для того, чтобы введенный фрагмент ДНК после включения его в хромосому либо реплицировался, либо автономно экспрессировался. Следовательно, вводимый генетический материал становится частью генома клетки. Необходимые составляющие генного инженера: а) генетический материал (клетку – хозяина); б) транспортное устройство – вектор, переносящий генетический материал в клетку; в) набор специфических ферментов - «инструментов» генной инженерии. Принципы и методы генной инженерии отработаны, прежде всего, на микроорганизмах; бактериях – прокариотах и дрожжах – эукариотах. Цель: получение рекомбинантных белков – решение проблемы дефицита сырья.


8 Слагаемые биотехнологического производства Главные особенности БТ производства: 1.два активных и взаимосвязанных представителя средств производства – биообъект и «ферментер»; 2.чем выше темп функционирования биообъекта, тем более высокие требования предъявляются к аппаратурному оформлению процессов; 3.оптимизации подвергают и биообъект и аппараты биотехнологического производства Цели осуществления биотехнологии: 1.основной этап производства ЛС – получение биомассы (сырья, ЛВ); 2.один или несколько этапов производства ЛС (в составе химического или биологического синтеза) - биотрансформация, разделение рацематов и т.п.; 3.полный процесс производства ЛС – функционирование биообъекта на всех стадиях создания препарата. Условия осуществления биотехнологий при производстве ЛП 1.Генетически обусловленная способность био-объекта к синтезу или специфической трансформации связанной с получением БАВ или ЛС; 2.Защищенность био-объекта в биотехнологической системе от внутренних и внешних факторов; 3.Обеспечение функционирующих в биотехнологических системах био- объектов пластическим и энергетическим материалом в объемах и последовательности, гарантирующих нужную направленность и темп биотрансформации.




КЛАССИФИКАЦИЯ ПРОДУКТОВ БИОТЕХНОЛОГИЧЕСКИХ ПРОИЗВОДСТВ типы продуктов получаемых БТ методами: –интактные клетки –одноклеточные организмы используют для получения биомассы –клетки (в т.ч. иммобилизованные) для биотрансформации. Биотрансформация - реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. (производство ам-к-т, а/б, стероидов и др.) низкомолекулярные продукты метаболизма живых клеток: –Первичные метаболиты необходимы для роста клеток. (структурные единицы биополимеров ам-к-ты, нуклеотиды, моносахариды, витамины, коферменты, органические к-ты) –Вторичные метаболиты (а/б, пигменты, токсины) НМС, не требующиеся для выживания клеток и образующиеся по завершении фазы их роста. Динамика изменения биомассы и образования первичных (А) и вторичных (Б) метаболитов в процессе роста организма: 1 биомасса; 2 продукт




Стадии БТ производства 1.Подготовка сырья (питательной среды) субстрата с заданными свойствами (рН, температура, концентрация) 2.Подготовка биообъекта: посевной культуры или фермента (в т.ч. иммобилизованного). 3.Биосинтез, биотрансформация (ферментация) - образование целевого продукта за счет биологического превращения компонентов питательной среды в биомассу, затем, если это необходимо, в целевой метаболит. 4.Выделение и очистка целевого продукта. 5.Получение товарной формы продукта 6.Переработка и утилизация отходов (биомассы, культуральной жидкости и т.п.) Основные типы биотехнологических процессов Биоаналогичные Производство метаболитов – химических продуктов метаболической активности, первичные - аминокислоты, полисахариды вторичные - алкалоиды, стероиды, антибиотики Многосубстратные конверсии (обработка сточных вод, утилизация лигноцеллюлозных отходов) Односубстратные конверсии (превращение глюкозы во фруктозу, D-сорбита в L- сорбозу при получении вит С) Биохимические производство клеточных компонентов (ферменты,нуклеиновые кислоты) Биологические Производство биомассы (белок одноклеточных)


1.Вспомогательные операции: 1.1. Подготовка посевного материала (инокулята): засев пробирок, качалочных колб (1-3 сут), инокулятора (2-3 % 2-3 сут), посевного аппарата (2-3сут). Кинетические кривые роста 1.индукционный период (лаг-фаза) 2.фаза экспоненциального роста (накопление биомассы и продуктов биосинтеза) 3.фаза линейного роста (равномерный рост культуры) 4.фаза замедленного роста 5.стационарная фаза (постоянство жизнеспособных особей 6.Фаза старения культуры (отмирания) N t Подготовка питательной среды выбор и реализация рецептуры среды, стерилизация гарантирующая сохранность пластических и энергетических компонентов, в исходном количестве и качестве. Особенностью биообъектов является потребность в многокомпонентных энергетических и пластических субстратах, содержащих О, С, N, Р, Н – элементы необходимые для энергетического обмена и синтеза клеточных структур.


Содержание биогенных элементов в различных биообъектах, в % Микро- организмы элемент углеродазотфосфоркислородводород бактерии50,412,34,030,56,8 дрожжи47,810,44,531,16,5 грибы47,95,23,540,46,7 Элементный состав биомассы по химическим элементам позволяет сделать для каждого биообъекта описание Существует количественная закономерность влияния концентрации элементов питательной среды на скорость роста биомассы, равно как и взаимовлияние тех же элементов на удельную скорость роста биообъектов С DN/ dT 123 C – концентрация лимитирующего компонента DN/dT – скорость роста микроорганизмов. 1 -область лимитирования, 2- область оптимального роста, 3 – область ингибирования.


1.3. Стерилизация питательной среды необходимо полностью исключить контаминантную флору и сохранить биологическую полноценность субстратов чаще автоклавирование, реже химические и физические воздействия. Эффективность выбранного режима стерилизации оценивают по константе скорости гибели микроорганизмов (берется из специальных таблиц) умноженная на продолжительность стерилизации Подготовка ферментера Стерилизация оборудования острым паром. Герметизация с особым вниманием к «слабым» точкам тупиковые штуцера малого диаметра, штуцера датчиков контрольно-измерительной аппаратуры. Выбор ферментера осуществляется с учетом критериев дыхания биообъекта, теплообмена, транспорт и превращения субстрата в клетке, скорость роста единичной клетки, время ее размножения и т.п.


Ферментация – основной этап биотехнологического процесса Ферментация – это вся совокупность операций от внесения микробов в подготовленную и нагретую до необходимой температуры среду до завершения биосинтеза целевого продукта или роста клеток. Весь процесс протекает в специальной установке – ферментере. Все биотехнологические процессы можно разделить на две большие группы - периодические и непрерывные. При периодическом способе производства простерилизованный ферментер заполняется питательной средой, часто уже содержащей нужные микроорганизмы. Биохимические процессы в этом ферментере продолжаются от нескольких часов до нескольких дней. При непрерывном способе подача равных объемов сырья (питательных веществ) и отвод культуральной жидкости, содержащей клетки продуцента и целевой продукт осуществляется одновременно. Такие ферментационные системы характеризуются как открытые.





По объёму: –лабораторные 0, л, –пилотные 100л -10 м3, –промышленные м3 и более. критерии выбора ферментера: –теплообмен, –скорость роста единичной клетки, –Тип дыхания биообъекта, –Вид транспорта и превращения субстрата в клетке –время размножения отдельной клетке. Аппаратурное оформление биотехнологического процесса - ферментеры:





Biostat A plus - автоклавируемый ферментер со сменными сосудами (рабочий объем 1,2 и 5 л) для культивирования микроорганизмов и культур клеток и является полностью масштабируемым при переходе к большим объемам. Единый корпус с интергрированным оборудованием измерения и управления, насосами, системой температурного контроля, подачи газа и мотором Ноутбук с заранее установленным Windows совместимым программным обеспечением MFCS / DA для управления процессами ферментации и их документирования Лабораторный (схема)


Параметры, влияющие на биосинтез (физически, химические, биологические) 1. Температура 2. Число оборотов мешалки (для каждого м/о (микроорганизмы) – разное число оборотов, разные 2х, 3х, 5-ти ярусные мешалки). 3. Расход подаваемого на аэрацию воздуха. 4. Давление в ферментере 5. рН среды 6. Парциальное давление растворенного в воде кислорода (количество кислорода) 7. Концентрация углекислого газа при выходе из ферментера 8. Биохимические показатели (потребление питательных веществ) 9. Морфологические показатели (цитологические) развитее клеток м/о, т.е. надо следить в процессе биосинтеза за развитием м/о 10. Наличие посторонней микрофлоры 11. Определение в процессе ферментации биологической активности Биосинтез БАВ (биологически активные вещества) в условиях производства


2. Основные операции: 2.1. Стадия биосинтеза, где в максимальной степени используются возможности биообъекта для получения лекарственного продукта (накапливается внутри клетки или секретируется в культуральную среду) Стадия концентрирования, одновременно предназначена для удаления баласта Стадия очистки, реализующая за счет повтора однотипных операций или за счет набора различных препаративных приемов (ультрафильтрация, экстракция, сорбция, кристаллизация и т. п) повышение удельной специфической активности лекарственного продукта Стадия получения конечного продукта (субстанции или готовой лекарственной формы) с последующими операциями фасовки и упаковки.


Питательная среда Разделение Культуральная жидкость Клетки Концентрирование Выделение и очистка метаболитов Дезинтеграция убитых клеток Биомасса убитых клеток Стабилизация продукта Биомасса живых клеток Обезвоживание Стабилизация продукта Применение Хранение Живой продуктСухой продукт Живой продукт Сухой продукт Живой продукт Сухой продукт Культивирование (ферментация) Подготовка инокулята Схема биотехнологического производства




Фармацевтические препараты требуют высокой степени чистоты Стоимость очистки тем выше, чем ниже концентрация вещества в клетках. Этапы очистки: 1. Сепарация. 2. Разрушение клеточных оболочек (дезинтеграция биомассы) 3. Отделение клеточных стенок. 4. Отделение и очистка продукта. 5. Тонкая очистка и разделение препаратов. 27


Этапы очистки Этап 1. СЕПАРАЦИЯ - отделение массы продуцента от жидкой фазы. Передвароительно для повышения эффективности может проводиться: изменение рН, нагревание, добавление коагулянтов белков или флокуллянтов. СПОСОБЫ СЕПАРАЦИИ 1. Флотация (буквально – плавание на поверхности воды) – разделение мелких частиц и выделение капель дисперсной фазы из эмульсий. Основана на различной смачиваемости частиц (капель) жидкостью (преимущественно водой) и на их избирательном прилипании к поверхности раздела, как правило, жидкость – газ (очень редко: твердые частицы – жидкость). Основные виды флотации: пенная (культуральную жидкость с биомассой микроорганизмов непрерывно вспенивают воздухом, подаваемым снизу вверх под давлением, клетки и их агломераты «прилипают» к пузырькам тонкодиспергированного воздуха и всплывают вместе с ними, собираясь в специальном отстойнике) масляная пленочная. 28


СПОСОБЫ СЕПАРАЦИИ 2. Фильтрация - используется принцип задержки биомассы на пористой фильтрующей перегородке. Используются фильтры: однократного и многократного использования; периодического и непрерывного действия (с автоматическим удалением слоя биомассы, забивающего поры); барабанные, дисковые, ленточные, тарелочные, карусельные вакуум-фильтры, фильтры-прессы различной конструкции, мембранные фильтры. 29


3. Физическое осаждение. Если биомасса содержит заметных количеств целевого продукта, она осаждается добавлением извести или других твердых компонентов, увлекающих клетки или мицелий на дно. 4. Центрифугирование. Осаждение взвешенных частиц происходит под действием центробежной силы с образованием 2 фракций: биомассы (твердая) и культуральной жидкости. «-»: необходимо дорогостоящее оборудование; «+»: позволяет максимально освободить культуральную жидкость от частиц; Цетрифугирование и фильтрация могут проходить одновременно в фильтрационных центрифугах. Высокоскоростное центрифугирование разделяет клеточные компоненты по размеру: более крупные частицы при центрифугировании движутся быстрее. 30 СПОСОБЫ СЕПАРАЦИИ


Этап 2. РАЗРУШЕНИЕ КЛЕТОЧНЫХ ОБОЛОЧЕК (ДЕЗИНТЕГРАЦИЯ БИОМАССЫ) Стадия используется, если искомые продукты находятся внутри клеток продуцента. МЕТОДЫ ДЕЗИНТЕГРАЦИИ механические, химические комбинированные. Физические методы - обработка ультразвуком, вращение лопасти или вибратора, встряхивание со стеклянными бусами, продавливание через узкое отверстие под давлением, раздавливание замороженной клеточной массы, растирание в ступке, осмотический шок, замораживание- оттаивание, декомпрессия (сжатие с последующим резким снижением давления). «+»: экономичность методов. «-»: неизбирательность методов, обработка может снижать качество получаемого продукта. 31


МЕТОДЫ ДЕЗИНТЕГРАЦИИ Химические и химико-ферментативные методы - клетки могут быть разрушены толуолом или бутанолом, антибиотиками, ферментами. «+»: более высокая избирательность методов Примеры: -клетки грамотрицательных бактерий обрабатывают лизоцимом в присутствии этилендиаминтерауксусной кислоты или других детергентов, -клетки дрожжей – зимолиазой улитки, ферментами грибов, актиномицетов. 32


ЭТАП 4. ОТДЕЛЕНИЕ И ОЧИСТКА ПРОДУКТА Выделение целевого продукта из культуральной жидкости или из гомогената разрушенных клеток проводят путем его осаждения, экстракции илииадсорбции. Осаждение: физическое (нагревание, охлаждение, разбавление, концентрирование); химическое (с помощью неорганических и органических веществ - этанол, метанол, ацетон, изопропанол). Механизм осаждения органическими веществами: снижение диэлектрической постоянной среды, разрушение гидратного слоя молекул. Высаливание: Механизм высаливания: гидратируются диссоциирующие ионы неорганических солей. Реагенты: сульфат аммония, сульфаты натрия, магния, фосфат калия. 33


Экстракция – процесс избирательного извлечения одного или нескольких растворимых компонентов из твердых тел и растворов с помощью жидкого растворителя – экстрагента. Типы экстракции: Твердо-жидкостная (вещество из твердой фазы переходит в жидкую) - например, хлорофилл из спиртовой вытяжки переходит в бензин Жидко-жидкостная (вещество переходит из одной жидкости в другую (извлечение антибиотиков, витаминов, каротиноидов, липидов). Экстрагенты: фенол, бензиловый спирт, хлороформ, жидкий пропанили бутан и др. Способы повышения эффективности экстракции: повторная экстракция свежим экстрагентом; выбор оптимального растворителя; нагревание экстрагирующего агента или экстрагируемой жидкости; понижением давления в аппарате для экстракции. Для экстракции хлороформом в лабораторных условиях используется аппарат «Сокслет», что позволяет многократно использовать растворитель. 34


ЭТАП 4. ОТДЕЛЕНИЕ И ОЧИСТКА ПРОДУКТА (продолжение) Адсорбция – частный случай экстракции, когда экстрагирующий агент является твердым телом - идет по ионообменному механизму. Адсорбенты: иониты на основе целлюлозы: катионит – карбоксиметилцеллюлоза (КМЦ); анионит – диэтиламиноэтилцеллюлоза (ДЭАЭ), сефадексы на основе декстрана и т.д. 35


МЕТОДЫ ТОНКОЙ ОЧИСТКИ И РАЗДЕЛЕНИЯ ПРЕПАРАТОВ Хроматография (от греч. chroma – цвет, краска и -графия) – физико-химический метод разделения и анализа смесей, основанный на распределении их компонентов между двумя фазами – неподвижной и подвижной (элюент), протекающей через неподвижную. Виды хроматографии по технике выполнения: колоночная - разделение веществ проводится в специальных колонках плоскостная: -тонкослойная (ТСХ) – разделение проводится в тонком слое сорбента; -бумажная – на специальной бумаге. 36


Для крупномасштабного отделения и очистки продуктов биотехнологических процессов применимы: аффинная преципитация - лиганд прикрепляют к растворимому носителю, при добавлении смеси, содержащей соответствующий белок, образуется его комплекс с лигандом, который выпадает в осадок сразу после его формирования или после дополнения раствора электролитом. аффинное разделение - основано на применении системы, содержащей два водорастворимых полимера – наиболее высокоэффективный из аффинных методов очистки. Гидрофобная хроматография основана на связывании белка в результате взаимодействия между алифатической цепью адсорбента и соответствующим гидрофобным участком на поверхности белковой глобулы. Система аффинной очистки рекомбинтных белков Profinia. 37


Электрофорез – метод разделения белков и нуклеиновых кислот в свободном водном растворе и пористом матриксе, в качестве которого можно использовать полисахариды, например, крахмал или агарозу. Модификацией метода является электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН-ПААГ) 38 Gel electrophoresis is a common method for separating protein or DNA Гель-электрофорез - распространенняй метод разделения белков или ДНК

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат , добавлен 26.10.2011

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    презентация , добавлен 05.02.2014

    Ферменты генетической инженерии. Типы нуклеаз и их действия. Методы получения химер. Использование специфических термостабильных ДНК-полимераз. Ферментативная активность рестриктаз. Образование фосфодиэфирной связи между двумя основаниями одной цепи ДНК.

    контрольная работа , добавлен 21.04.2011

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат , добавлен 11.11.2010

    Понятие генетической инженерии, ее основные цели и задачи, порядок применения при получении рекомбинантных белков. Биологическая природа и типы плазмид, их разновидности и отличительные черты. признаки присутствия плазмид в бактериальной клетке.

    реферат , добавлен 23.01.2010

    Последовательность приемов генетической инженерии, используемая при создании генетически модифицированных организмов. Классификация основных типов рестриктаз, используемых для фрагментации ДНК. Ферменты, синтезирующие ДНК на матрице ДНК или РНК.

    краткое содержание других презентаций

    «Сельскохозяйственная биотехнология» - Нарушение формирования волосяного покрова. Фитобиотехнология. Сельскохозяйственная биотехнология. Трансформация растений. Метод получения изолированных протопластов. Метод электрослияния изолированных протопластов. Биотехнология в кормовой промышленности. Способность к неограниченному росту. Направления генетической модификации растений. Трансплантация эмбрионов. Т-сегмент. Получение трансгенных растений.

    «Перспективы биотехнологии» - Проблемы экологии и управление отходами. Создание синергетического эффекта. Российская технологическая платформа. Структура бюджета. Промышленная биотехнология. Рейтинг региональных кластеров. Подготовка кадров. Биоиндустрия в СССР. Ресурсы. Стратегия социально-экономического развития. Стратегическое развитие аграрного комплекса. Сценарии развития. Направления инновационной деятельности. Ожидаемые результаты.

    «Развитие генной инженерии» - Основной единицей наследовательности любого организма является ген. В организм животного был введен некий ген, позволявший «обходить заболевания стороной». Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бартериальную плазмиду в ДНК лягушки. Так, например, компания «Lifestyle Pets» создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД.

    «Множественные выравнивания» - Jalview – редактирование выравниваний. Какие бывают выравнивания? Современные методы построения множественного выравнивания (MSA, multiple sequence alignment). Использование ClustalW. Как “читать” множественное выравнивание? Что такое множественное выравнивание? TCoffee. Какие output-форматы бывают. Можно ли редактировать множественное выравнивание? Какое выравнивание интереснее? Руководящее дерево.

    «Генетическая инженерия» - Полезное влияние генной инженерии. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Ребёнок в результате наследует генотип от одного отца и двух матерей. Научные факторы опасности генной инженерии. 8. Могут возникнуть новые и опасные вирусы. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Такие новые вирусы могут быть более агрессивными, чем исходные.

    «Сравнительная геномика» - Результаты. Разные виды кинетических уравнений. Пример (абстрактный). Что получается (кишечная палочка). Система уравнений. Потоковые модели – стационарное состояние. Пространство решений. Системная биология - модели. Потоковые линейное программирование. Проблемы. Пример (реальный) – синтез лизина в corynebacterium glutamicum. Уравнения баланса. Кинетический анализ регуляции. Мутанты. Кинетические уравнения.





error: Контент защищен !!