Виды геометрических моделей и их свойства. Геометрическая модель модель такое представление данных которое

Электронная геометрическая модель объекта в дизайне

E-mail: *****@***ru

В настоящее время большинство предприятий применяют информацион­ные тех­нологии в проектной деятельности , основой ко­торых является создание объекта дизайн-проекта. Электронная геометрическая модель лежит в основе современной дизайнерской и технической документации на объект проекта. Модель содержит полную информацию о геометрических параметрах, свойствах формы объекта и является исходным данным для генерации программного кода для производственного оборудования. Для достижения художественной выразительности объекта дизайн-проекта посредством современных информационных тех­нологий требуется от дизайнера правильная квалифицированная организация их элементов. Изложенное вы­яв­ляет актуаль­ность определения конструктивно-технологических требований к качеству электронной геометриче­ской модели объекта дизайн-проекта и ее места в проектном моделировании.

Проектное моделирование в дизайне с электронной геометриче­ской модели объекта дизайн-проекта классифицируется по следующим критериям (рисунок): форма, способ, средство, результат и функция проектного моделирования.

Рисунок – Электронная геометрическая модель в проектном моделировании

В процессе опытных проектно-конструкторских работ определены требо­вания к качеству и точности построения электронной геометриче­ской модели объекта дизайн-проекта, которые представлены в таблице.


Таблица – Конструктивно-технологические требования к качеству и точности

построения электронной геометриче­ской модели объекта дизайн-проекта

Наименование требования

Характеристика

Нормативные требования к

ГОСТ 2. «ЕСКД. Электронные до­ку­менты. Общие положе­ния»;

ГОСТ 2. «ЕСКД. Электронная мо­дель изделия. Общие поло­жения»;

ГОСТ 2. «ЕСКД. Электронная структура изделия. Общие по­ложения»

электронной геометрической модели

Твердотельный (solid);

По­верхностный (surface);

Каркасный (curve)

Применяемые

программные системы для создания

электронной геомет­рической модели

CAD-системы (Сomputer Aided Design);

CAE-системы (Сomputer Aided Engineering);

САМ-системы (Сomputer Aided Manufacturing)

Параметры

электронной геометрической модели

Стандартное графическое отображение модели – модель формата сис­темы, в которой создана мо­дель и модель формата IGES, STP (единые ме­жду­народные стандарты хранения электронной ин­формации);

Единицы измерения – мм;

Рабочий масштаб – 1:1;

Параметры точности модели – линейный допуск 0,005 мм и угловой допуск 0,1°;

Максимальный размер модели – 20000 мм;

Электронная геометрическая модель, разрабо­танная сторон­ними исполнителями, применяются в дальнейшей работе с собственными па­рамет­рами

Объ­ем файла

электронной геометрической модели

Не допускать применение геометрически совпа­дающих элементов построения в пределах линей­ных и угловых допусков;

Не допускать включенные элементы анализа геометрии и закраску элементов геометрии в мо­дели;

Модель должна содержать логичную топологию (иметь четкие основ­ные образующие поверхности, скругления и фаски)

Качество топологии

электронной геометриче­ской модели

Не допускать применение немонотонных поверх­ностей, имеющих из­ломы и негладкие образующие линии (за исключением специальных случаев);

Для моделей, описанных поверхностью, не до­пускать разрывы между элементами и самопере­сечения элементов;

В геометрии модели должны отсутствовать разрывы с линейным допуском 0,005 мм и угловым допуском 0,1°;

Максимальное расхождение модели с результа­тами обмеров – 0,02 мм;

Максимальное расхождение установочных (кон­трольных) точек мо­дели с имеющейся чертежной документацией – 0,02 мм;

Логичная топология модели (поверхности и скругления между ними) с отсутствием поверхно­стей со сложной геометрией

Система координат расположения

электронной геометриче­ской модели

Координатная сетка электронной геометрической модели в программной системе должна быть пози­ционирована относительно предполагаемой техно­логической оснастки (установки)

Применение слоев в структуре

электронной геометриче­ской модели

Для различных вариантов формы объекта в формате системы, в которой построена модель, применять определенные схемы размещения информации по слоям

Обозначение файла

электронной геометрической модели

Применение определенной схемы обозначения файла электронной геометрической модели согласно корпоративным требованиям

описания поверхности объекта в электронной геометрической мо­дели

Описание поверхности в геометрической модели должно содержать полную информацию о форме объекта;

По согласованию с заказчиком допускается разра­ботка «частичных» электронных геометриче­ских моделей, кото­рые не содержат полного опи­сания формы объекта;

Для форм, получаемых листовой штамповкой, разрабатывается электронная геометрическая мо­дель только на одну поверхность, совпадающую с поверхностью, представленной на чертеже;

Для форм, получаемых литьем, формовкой, объемной штамповкой и листовой штамповкой, форм из стекла, толщина материала в которых более 2,5 мм, должна быть разработана электронная геометри­ческая модель на обе поверхности формы

Классифицирована электронная геометриче­ская модель объекта дизайн-проекта в проектном моделировании и определены для электронной геометриче­ской модели форма, способ, интеграция с другими способами, средство, результат, функция проектного моделирования. Определены конструктивно-технологические требования к качеству и точности построения электронной геометриче­ской модели объекта дизайн-проекта для обеспечения эффективного учебного и профессионального дизайн-проектирования в аспекте последующей под­готовки к производству.

Среди всего разнообразия моделей, применяемых в науке и технике, самое широкое распространение получили математические модели. Под математическими моделями обычно понимаются различные математические конструкции, построенные на основе современной вычислительной техники, описывающие и воспроизводящие взаимосвязи между параметрами моделируемого объекта. Для установления связи между числом и формой существуют различные способы пространственно-числового кодирования. Простота и доступность решения практических задач зависит от удачно выбранной системы отсчета. Геометрические модели классифицируют на предметные (чертежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные модели. Графические построения могут служить для получения численных решений различных задач. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм – аналитические методы.

Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п. Графическая модель зависимости называется графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Например, диаграмма состояния (фазовая диаграмма), графически изображает соотношение между параметрами состояния термодинамически равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой.

Особенно интересным является использование геометрии для оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма.Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Приступая к изучению какого-либо конкретного явления, специалист, прежде всего, собирает факты, т.е. отмечает такие ситуации, которые поддаются экспериментальному наблюдению и регистрации с помощью органов чувств или специальных приборов. Экспериментальное наблюдение всегда носит проекционный характер, так как множеством фактов, неразличимых в данной ситуации (принадлежащих одному проектирующему образу) присваивается одно и то же название (проекция). Пространство, отнесенное к изучаемому явлению, называется операционным, а пространство, отнесенное к наблюдателю, – картинным. Размерность картинного пространства определяется возможностями и средствами наблюдения, т.е. вольно или невольно, сознательно и совершенно стихийно устанавливается экспериментатором, но всегда меньше размерности исходного пространства, которому принадлежат исследуемые объекты, обусловленные разнообразными связями, параметрами, причинами. Размерность исходного пространства очень часто остается не выявленной, т.к. существуют не выявленные параметры, которые влияют на исследуемый объект, но не известны исследователю или не могут быть учтены. Проекционный характер любого экспериментального наблюдения объясняется, прежде всего, невозможностью повторения событий во времени; это один из регулярно возникающих и неуправляемых параметров, независящих от воли экспериментатора. В некоторых случаях этот параметр оказывается несущественным, а в других случаях играет очень важную роль. Отсюда видно, какое большое и принципиальное значение имеют геометрические методы и аналогии при построении, оценке или проверке научных теорий. Действительно, каждая научная теория основывается на экспериментальных наблюдениях, а результаты этих наблюдений представляют собой – как сказано – проекцию изучаемого объекта. При этом реальный процесс может быть описан несколькими различными моделями. С точки зрения геометрии это соответствует выбору различного аппарата проектирования. Он различает объекты по одним признакам и не различает их по другим. Одной из наиболее важных и актуальных задач является выявление условий, при которых происходит сохранение или, наоборот, распадение детерминизма модели, полученной в результате эксперимента или исследования, так как практически всегда важно знать, насколько эффективна и пригодна данная гомоморфная модель. Решение поставленных задач геометрическими средствами оказалось уместным и естественным в связи с использованием указанных выше проекционных воззрений. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования. Совершенной модели соответствуют закономерности, устанавливающие однозначное или многозначное, но, во всяком случае, вполне определенное соответствие между некоторыми исходными и искомыми параметрами, описывающими изучаемое явление. В этом случае действует эффект схематизации, преднамеренное сокращение размерности картинного пространства, т.е. отказ от учета ряда существенных параметров, позволяющих экономить средства и избежать ошибок. Исследователь постоянно имеет дело с такими случаями, когда интуитивно незакономерные явления отличаются от закономерных явлений, где существует какая-то связь между параметрами, характеризующими исследуемый процесс, но пока не известен механизм действия этой закономерности, для чего в последствии ставится эксперимент. В геометрии этому факту соответствует различие между распавшейся моделью и совершенной моделью с неявно выраженным алгоритмом. Задачей исследователя в последнем случае является выявление алгоритма в проекции, элементов входа и элементов выхода. Закономерность, полученная в результате обработки и анализа некоторой выборки экспериментальных данных, может оказаться недостоверной из-за неверно сделанной выборки действующих факторов, подвергнутых исследованию, так как она оказывается лишь вырожденным вариантом более общей и более сложной закономерности. Отсюда возникает необходимость в повторных или натурных испытаниях. В геометрическом моделировании этому факту – получению неверного результата – соответствует распространение алгоритма для некоторого подпространства элементов входа, на все элементы входа (т.е. нестабильность алгоритма).

Простейшим реальным объектом, который удобно описывать и моделировать с помощью геометрических представлений, является совокупность всех наблюдаемых физических тел, вещей и предметов. Эта совокупность заполняет физическое пространство, которое можно рассматривать как исходный объект, подлежащий изучению, геометрическое пространство – как его математическую модель. Физические связи и отношения между реальными объектами заменяются позиционными и метрическими отношениями геометрических образов. Описание условий реальной задачи в геометрических терминах является очень ответственным и самым сложным этапом решения задачи, требующим сложной цепи умозаключений и высокого уровня абстракции, в результате которого реальное событие облекается в простую геометрическую конструкцию. Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

При решении многих задач начертательной геометрии возникает необходимость в преобразованиях изображений, полученных на плоскостях проекций. Коллинеарные преобразования на плоскости: гомология и аффинное соответствие – имеют существенное значение в теории начертательной геометрии. Так как любая точка на плоскости проекций является элементом модели точки пространства, уместно предположить, что любое преобразование на плоскости порождается преобразованием в пространстве и, наоборот, преобразование в пространстве вызывает преобразование на плоскости. Все преобразования, выполняемые в пространстве и на модели, проводятся с целью упрощения решения задач. Как правило, такие упрощения связаны с геометрическими образами частного положения и, следовательно, суть преобразований, в большинстве случаев, сводится к преобразованию образов общего положения в частное.

Построенная по методу двух изображений плоская модель трехмерного пространства вполне однозначно или, как говорят, изоморфно сопоставляет элементы трехмерного пространства с их моделью. Это позволяет решить на плоскостях практически любую задачу, которая может возникнуть в пространстве. Но иногда по некоторым практическим соображениям, бывает целесообразно дополнить такую модель третьим изображением объекта моделирования. Теоретической основой для получения дополнительной проекции служит геометрический алгоритм, предложенный немецким ученым Гауком.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи. Задачи, связанные с выявлением взаимного положения геометрических образов относительно друг друга, называются позиционными. В пространстве прямые линии и плоскости могут пересекаться и могут не иметь пересечения. Открытые позиционные задачи в исходном пространстве, когда кроме задания пересекающихся образов не требуется никаких построений, становятся закрытыми на плоской модели, так как алгоритмы их решения распадаются из-за невозможности выделения геометрических образов. В пространстве прямая линия и плоскость всегда имеют пересечение в собственной или несобственной точке (прямая параллельна плоскости). На модели плоскость задается гомологией. На эпюре Монжа плоскость задается родственным соответствием и для решения задачи необходимо реализовать алгоритм построения соответственных элементов в заданном преобразовании. Решение задачи на пересечение двух плоскостей сводится к определению линии, которая одинаково преобразуется в двух заданных родственных соответствиях. Позиционные задачи на пересечение геометрических образов, занимающих проецирующее положение, значительно упрощаются в связи вырожденностью их проекций и поэтому играют особую роль. Как известно, одна проекция проецирующего образа обладает собирательным свойством, все точки прямой линии вырождаются в одну точку, а все точки и линии плоскости вырождаются в одну прямую линию, поэтому позиционная задача на пересечение сводится к определению недостающей проекции искомой точки или линии. Учитывая простоту решения позиционных задач на пересечение геометрических образов, когда хотя бы один из них занимает проецирующее положение, можно решать позиционные задачи общего вида с помощью методов преобразования чертежа для преобразования одного из образов в проецирующее положение. Имеет место факт: различные пространственные алгоритмы на плоскости моделируются одним и те же алгоритмом. Это можно объяснить тем, что в пространстве существует алгоритмов на порядок больше, чем на плоскости. Для решения позиционных задач используются различные методы: метод сфер, метод секущих плоскостей, преобразования чертежа. Операция проецирования может рассматриваться как способ образования и задания поверхностей.

Существует большой круг задач, связанных с измерением длин отрезков, величин углов, площадей фигур и т. д. Как правило, эти характеристики выражаются числом (две точки определяют число, характеризующее расстояние между ними; две прямые определяют число, характеризующее величину образованного ими угла и т. д.), для определения которого используются различные эталоны или шкалы. Примером таких эталонов являются обычная линейка и транспортир. Для того чтобы определить длину отрезка, надо сравнить его с эталоном, например, линейкой. А как приложить линейку к прямой линии общего положения на чертеже? Масштаб линейки в проекциях будет искажаться, причем для каждого положения прямой будет свой масштаб искажения. Для решения метрических задач на чертеже необходимо задать опорные элементы (несобственную плоскость, абсолютную полярность, масштабный отрезок), используя которые можно построить любую шкалу. Для решения метрических задач на эпюре Монжа используют преобразования чертежа так, чтобы искомые образы не искажались хотя бы в одной проекции. Таким образом, под метрическими задачами будем понимать преобразования отрезков, углов и плоских фигур в положения, когда они изображаются в натуральную величину. При этом можно использовать различные способы. Существует общая схема решения основных метрических задач на измерение расстояния и углов. Наибольший интерес представляют конструктивные задачи, решениекоторых опирается на теорию решения позиционных и метрических задач. Под конструктивными задачами понимаются задачи, связанные с построением геометрических образов, отвечающих определенным теорем начертательной геометрии.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики. В процессе изучения теоретической механики и сопротивления материалов появляются качественно новые виды наглядности: схематичный вид конструкции, расчетная схема, эпюра. Эпюра – это разновидность графика, на котором показаны величина и знак различных внутренних силовых факторов, действующих в любой точке конструкции (продольных и поперечных сил, крутящих и изгибающих моментов, напряжений и т. д.). В курсе сопротивления материалов в процессе решения любой расчётной задачи требуется неоднократное перекодирование данных путём использования различных по своим функциям и уровням абстракции изображений. Схематичный вид, как первая абстракция от реальной конструкции, позволяет сформулировать задачу, выделить её условия и требования. Расчетная схема условно передаёт особенности конструкции, её геометрические характеристики и метрические соотношения, пространственное положение и направление действующих силовых факторов и реакций опор, точки характерных сечений. На её основе создаётся модель решения задачи, и она служит наглядной опорой в процессе реализации стратегии на разных этапах решения (при построении эпюры моментов, напряжений, углов закручивания и других факторов). В дальнейшем при изучении технических дисциплин идёт усложнение структуры используемых геометрических образов с широким использованием условно-графических изображений, знаковых моделей и их различных сочетаний. Таким образом, геометрические модели становятся интегрирующим звеном естественных и технических учебных дисциплин, а также методов профессиональной деятельности будущих специалистов. В основе становления профессиональной культуры инженера положена графическая культура, позволяющая разные виды деятельности объединить в рамках одной профессиональной общности. Уровень подготовки специалиста определяется тем, насколько развито и подвижно его пространст­венное мышление, так как, инвариантной функцией интеллектуальной деятельности инженера является оперирование образными графическими, схематическими и знаковыми моделями объектов.


Похожая информация.


Это модели, которые с определённой точностью описывают геометрические свойства проектируемого объекта. Геометрические свойства – это пространственное отношение и формы (фигуры). В геометрии понятие пространство и фигуры определяется исходя из понятия множества. Пространство определяется как множество каких-либо элементов (точек), а фигура определяется как произвольное множество точек в данном пространстве.

В САПР используется математическое представление геометрической модели. Наука, которая занимается этим – инженерная (прикладная) геометрия. При геометрическом моделировании объект проектирования предстаёт как геометрический объект (ГО). Для любого геометрического объекта можно определить совокупность независимых условий, однозначно задающих этот объект, то есть позволяющие для любой точки пространства установить, принадлежит эта точка объекту или нет. Такую совокупность независимых условий называют определителем геометрического объекта. В число условий входят геометрические фигуры (точки, линии, поверхности,) и определённая последовательность действий, посредством которых из этих геометрических фигур можно построить данный геометрический объект. Эта последовательность действий называется алгоритмом воспроизведения данного геометрического объекта.

Количественно геометрический объект характеризуется параметрами . При выделении параметров важно учитывать области их существования, например, для треугольника числа, выражающие длины сторон, всегда больше нуля и сумма двух чисел больше третьего числа.

Для описания геометрической фигуры необходимо выделить параметры двух типов – формы и положения . Параметры формы характеризуют размеры и форму геометрической фигуры, они не изменяются при изменении положения фигуры в пространстве; параметры положения характеризуют положение геометрической фигуры в пространстве. Параметризация формы производится в системе координат, которая связана с самой фигурой и перемещается вместе с ней. Параметризация положения фигуры производится в системе координат независимо от фигуры.

При описании геометрического объекта различают подмножества граничных точек – поверхность геометрического объекта ; и подмножество внутренних точек – тело геометрического объекта .

Геометрические объекты бывают сложной формы и сложной структуры. Геометрические объекты сложной формы – это те, у которых поверхность сложного характера (например, корпус судна, автомобиля). Геометрические объекты сложной структуры – состоящие из нескольких ГО.

В автоматизированном проектировании известны два основных подхода к геометрическому модулированию:

Первый подход состоит в том, что выделяется некоторый набор геометрических фигур, которые в данном классе задач считаются элементарными (базовыми). Наряду с геометрическим набором вводится набор действий – геометрических операций над этим набором. Геометрический объект в этом случае называется составным (конструктивным).

Второй подход непосредственное описание и воспроизведение геометрических свойств объекта без использования вспомогательных, заранее заготовленных фиксированных фигур. В этом случае непосредственно описывается закон образования геометрического объекта как множество точек, обладающих соответствующими свойствами.

Подход, основанный на «прямом» моделировании геометрического объекта, в зависимости от способа формирования можно разделить на кусочно-аналитические и алгебро-логические модели объекта .

В кусочно-аналитических моделях поверхность объекта представляется отдельными кусками гладких поверхностей, называемыми гранями. Каждая грань задаётся своим уравнением поверхности и границами грани. Рёбра геометрического объекта или границы грани есть линии пересечения поверхностей, ограничивающие геометрический объект. Точки пересечения рёбер называются вершинами .

Существует три вида моделей: стержневая, оболочная и объемная.

Стержневая модель геометрического объекта позволяет весьма просто дать форму изображения проектируемого объекта путём построения проволочно-каркасной модели геометрического объекта. В такой модели описываются только рёбра и вершины геометрического объекта, грани не описываются (рис.1а).Ребра представлены в виде стержней, соединенных в узлах (вершинах 1,2,3....). Основными уравнениями для описания такой модели являются уравнения прямой линии в трехмерном пространстве. Такая модель является подмоделью, но она позволяет оперативно осуществлять вывод изображения геометрического объекта, а также выполнять такие операции, как построение аксонометрических и перспективных проекций.


Математическое описание моделей такого рода сравнительно простое, что обуславливает высокое быстродействие программного обеспечение. К недостаткам таких моделей следует отнести сложность или невозможность представления внутреннего облика объекта, построения произвольных его разрезов и сечений.

Геометрические модели объекта

а – стержневая; б - оболочечная

Оболочечная модель объекта (рис.1б) , основана на представлении внешнего облика объекта в виде совокупности поверхностей, являющихся гранями модели (А, Б, В...). Линии пересечения поверхностей образуют ребра модели.

Такая модель описывается системой уравнений поверхностей и может быть использована для моделирования внешнего облика объектов любой формы. Основной ее недостаток невозможность представления внутреннего облика объекта, построение его разрезов и сечений.


Наиболее современной моделью, нашедшее широкое применение в САПР, является объемная (твердотелая модель). Общепринятым порядком моделирования твердого тела является последовательность выполнения булевых операций (объединение, вычитание и пересечение) над объемными элементами (сферы, призмы, цилиндры, конусы, пирамиды и т.д.). Эти элементы описываются теми же уравнениями, что и поверхности оболочечной модели, однако объемные элементы считаются заполненными. Пример выполнения операций с объемными элементами показан на рис.2.

Рис.2. Операции с объемными элементами

Геометрические модели классифицируют на предметные, расчетные и познавательные. Среди геометрических моделей можно выделить плоские и объемные модели. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других. Чертежи машин, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Чертежи могут быть монтажными, общего вида, сборочными, табличными, габаритными, наружных видов, пооперационными и т.д. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, проекции с числовыми отметками, аффинные проекции, стереографические проекции, кинеперспектива и т.п. К предметным моделям относятся чертежи, карты, фотографии, макеты, телевизионные изображения и т.п. Предметные модели тесно связаны с визуальным наблюдением. Среди предметных геометрических моделей можно выделить плоские и объемные модели. Предметные модели существенно различаются по способу исполнения: чертежи, рисунки, картины, фотографии, киноленты, рентгенограммы, макеты, модели, скульптуры и т.п. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают на подлинники, оригиналы и копии.



Графические построения могут служить для получения численных решений различных задач. Графически можно выполнять алгебраические действия (складывать, вычитать, умножать, делить), дифференцировать, интегрировать и решать уравнения. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезки откладываются на прямой линии. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла прямыми параллельными линиями. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать и интегрировать, а также решать уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяются на элементарные и составные номограммы. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм аналитические методы. Номография – переход от аналитической машины к геометрической машине.

К познавательным моделям относятся графики функций, диаграммы и графы. Графическая модель зависимости одних переменных величин от других называется графиком функций. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования. Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой. Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, в решении вероятностных и комбинаторных задач и т.п.

Особое значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, а свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стерео- и фотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изображениям в военном деле, космических исследованиях, геодезии и картографии. Современная топология изучает непрерывные свойства фигур и их взаимного расположения. Фрактальная геометрия (введена в науку в 1975 Б. Мандельбротом), изучающая общие закономерности процессов и структур в природе, благодаря современным компьютерным технологиям стала одним из самых плодотворных и прекрасных открытий в математике. Фракталы пользовались бы еще большей популярностью, если бы опирались на достижения современной теории начертательной геометрии.

Задачи классической начертательной геометрии можно условно разделить на позиционные, метрические и конструктивные задачи.

В технических дисциплинах используются статические геометрические модели, которые помогают сформировать представления об определенных предметах, их кон­структивных особенностях, о входящих в их состав элементах, и динамические или функциональные геометрические модели, которые позволяют демонстрировать кинематику, функциональные связи или же технические и технологические процессы. Очень часто геометрические модели позволяют проследить ход таких явлений, которые обычному наблюдению не поддаются и могут быть представлены на основании имеющихся знаний. Изображения позволяют не только представить устройство оп­ределенных машин, приборов и оборудования, но одновременно охарактеризовать их технологические особенности и функциональ­ные параметры.

Чертежи дает не только геометрическую информацию о форме деталей узла. По нему понимается принцип работы узла, перемещение деталей относительно друг друга, преобразование движений, возникновение усилий, напряжений, преобразование энергии в механическую работу и т.п. В техническом вузе чертежи и схемы имеют место во всех изучаемых общетехнических и специальных дисциплинах (теоретическая механика, сопротивление материалов, конструкционные материалы, электромеханика, гидравлика, технология машиностроения, станки и инструменты, теория машин и механизмов, детали машин, машины и оборудование и др.). Для передачи различной информации чертежи дополняют различными знаками и символами, а для их словесного описания используются новые понятия, в основу формирования которых положены фундаментальные понятия физики, химии и математики.

Особенно интересным является использование геометрических моделей для проведения аналогий между геометрическими законами и реальными объектами для анализа сущности явления и оценки теоретического и практического значения математических рассуждений и анализа сущности математического формализма. Отметим, общепринятые средства передачи приобретаемого опыта, знаний и восприятия (речь, письменность, живопись и т. д.) являются заведомо гомоморфной проекционной моделью реальной действительности. Понятия о проекционном схематизме и операции проектирования относятся к начертательной геометрии и имеют своё обобщение в теории геометрического моделирования.Проекционные геометрические модели, получаемые в результате операции проецирования, могут быть совершенными, несовершенными (различной степени несовершенства) и распавшимися. С геометрической точки зрения, любой объект может иметь множество проекций, различающихся как положением центра проектирования и картины, так и их размерностью, т.е. реальные явления природы и общественных отношений допускают различные описания, отличающиеся друг от друга степенью достоверности и совершенства. Основой научного исследования и источником всякой научной теории является наблюдение и эксперимент, который всегда имеет целью выявления некоторой закономерности. Все эти обстоятельства послужили основанием для использования аналогий между различными видами проекционных геометрических моделей, полученных при гомоморфном моделировании, и моделями, возникающими в результате исследования.

Подсистемы графического и геометрического моделирования (ГГМ) занимают центральное место в САПП. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму изделия, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, цвета поверхности и т.п.).

В подсистемах ГГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию при помощи ПК при необходимости корректировку решения в интерактивном режиме.

Две последние операции реализуются на базе вычислительных средств ГГМ. Когда говорят о математическом обеспечении ГГМ, имеют в виду, прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации.

Различают математическое обеспечение двумерного (2D) и трехмерного (3D) ГГМ.

Основные применения 2D ГГМ подготовка чертежной документации в САПП, топологическое проектирование печатных плат и кристаллов БИС в САПП электронной промышленности.

В процессе 3D моделирования создаются геометрические модели, т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).

Каркасная модель представляет форму изделия в виде конечного множества линий, лежащих на поверхностях изделия. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях САПП неудобно, и поэтому каркасные модели в настоящее время используют редко.

Поверхностная модель отображает форму изделия с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.

Особое место занимают модели изделий с поверхностями сложной формы, так называемыми скульптурными поверхностями . К таким изделиям относятся, например, корпуса микросхем, компьютеров, рабочих станций) и др.

Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к изделию пространству.

Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold ), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.

Систематизация геометрических моделей

Сгеометрическими моделями приходится иметь дело матема­тику и физику, инженеру и конструктору, ученому и рабочему, врачу и художнику, космонавту и фотографу. Однако до сих пор не существует какого-либо систематического руководства по геометрические моделям и их применению. Объясняется это прежде всего тем, что слишком широк и разнообразен круг геометри­ческих моделей.

Геометрические модели могут являться воплощением замысла проектировщика и служат для создания нового объекта. Име­ет место и обратная схема, когда по объекту делается модель, например, при реставрации или ремонте.

Геометрические модели классифицируют на предметные (чер­тежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и разме­рах объекта, о его расположении относительно других.

Чертежи машин, сооружений, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначе­ний, особых правил и определенного масштаба. Различают черте­жи деталей, монтажные, общего вида, сборочные, табличные, га­баритные, наружных видов, пооперационные и т.д. В зависимости от стадии проектирования чертежи различают на чертежи тех­нического предложения, эскизного и технического проектов, ра­бочие чертежи. Чертежи также различают по отраслям производс­тва: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, числовые отметки, аффинные проекции, стереографические проек­ции, киноперспектива и т.д.

Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные.

Графические построения могут служить для получения чи­сленных решений различных задач. При вычислении алгебраи­ческих выражений числа изображаются направленными отрезка­ми. Для нахождения разности или суммы чисел соответствую­щие им отрезка откладываются на прямой. Умножение и деле­ние осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла параллельными прямыми. Комбинация действий умножения и сложения позволяет вычис­лять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений явля­ется значение абсциссы точки пересечения кривых. Графичес­ки можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать, и интегрировать диффе­ренциальные уравнения. Геометрические модели для графичес­ких вычислений необходимо отличать от номограмм и расчет­ных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограм­мы и РГМ представляют собой геометрические изображения фун­кциональных зависимостей и не требуют для нахождения чис­ленных значений новых построений. Номограммы и РГМ исполь­зуются для вычислений и исследований функциональных зави­симостей. Вычисления на РГМ и номограммах заменяется счи­тыванием ответов с помощью элементарных операций, указан­ных в ключе номограммы. Основными элементами номограмм яв­ляются шкалы и бинарные поля. Номограммы подразделяют на элементарные и составные. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограм­мы состоит в том, что для построения РГМ используются гео­метрические методы, а для построения номограмм – аналити­ческие методы.

Геометрические модели, изображающие отношения между элементами множества называются графами . Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой линией. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планиро­вания и управления, теории расписаний, социологии, биоло­гии, электронике, в решений вероятностных и комбинаторных задач и т.п.

Графическая модель функциональной зависимости называет­ся графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования.

Графическое изображение, наглядно показывающее соотно­шение каких-либо величин, является диаграммой. Например, ди­аграмма состояния (фазовая диаграмма), графически изобража­ет соотношение между параметрами состояния термодинамической равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо вели­чин по количественному признаку, называется гистограммой.

Особо важное значение имеют теоретические геометричес­кие модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразова­ния и неизменные свойства фигур, независящие от них. В на­чертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассмат­риваются в планиметрии, свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются за­висимости между углами и сторонами сферических треугольни­ков. Теория фотограмметрии и стереофотограмметрии позволя­ет определять формы, размеры и положения объектов по их фо­тографическим изобра





error: Контент защищен !!